因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議

2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。

該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。

實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之:

一、人員面:

1.員工(教育訓練、合約)
在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。
在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。

2.生成式AI工具提供者(合約)
針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。

二、技術方面:
建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。

綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。

本文同步刊登於TIPS網站(https://www.tips.org.tw

相關連結
你可能會想參加
※ 因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9220&no=64&tp=1 (最後瀏覽日:2025/12/07)
引註此篇文章
你可能還會想看
美國聯邦上訴法院針對加州禁止販售暴力電玩予未成年人法令進行審議

  美國聯邦第9巡迴上訴法院日前針對一項於2005年制定之加州法律進行罕見的聽審程序,以便決定此一州法是否因違反聯邦憲法第一修正案而無效。   此一法律之內容係禁止販售或出租暴力電玩予任何未滿十八歲之人,且要求此種電玩均須加以明確標誌。而電玩廠商則宣稱此一法律已侵犯了未成年人受憲法第一修正案所保護之言論自由。而值得注意者為,除去年下級法院已對此一案件做出電玩廠商勝訴之判決外,其他的州法院也紛紛做出具有類似限制內容之法律為違憲無效之判決。   然而,儘管如此,加州檢察總長Zackery Morazzini依然表示:州政府本即有權協助家長使未成年人遠離暴力電玩的不良影響。且美國聯邦最高法院亦已肯認禁止未成年人接觸明顯「性資訊」之法律為合憲。與此相同,暴力電玩可說亦同樣具有「猥褻」之特性。   而電玩廠商於訴訟中則表示:倘若此一法律得以合憲,則勢必會產生滑坡效應,即州政府勢必將會以保護兒童為藉口,而對於其它資訊,諸如同性戀、性教育、生育控制等等之提供作出更多的限制。而此種滑坡效應,顯然亦是第9巡迴上訴法院所關切的重點之一:如Alex Kozinski及Sidney Thomas兩位法官,均在聽審程序中特別表達對於此一效應的關注。   無論如何,上訴法院亦將於未來幾個月內對於此案做出判決。然而,顯而易見的是,無論上訴法院會如何裁判,本案最終仍須經聯邦最高法院裁決後方能有最終決定。

美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力

2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。

歐盟擬立法要求電信業者及ISP業者保留通聯紀錄

  歐洲議會民眾權益委員會( the European Parliament's civil liberties committee)於2005年11月25日以33票對8票通過新的指令草案,要求電話與網路的通聯紀錄(但不包含內容紀錄)均需被保留6個月到12個月。目前此草案已送交部長理事會(Council of Ministers)審議中。   為避免保留之通聯紀錄遭到濫用,民眾權益委員會要求僅法官可以調閱通聯紀錄,且僅限於調查重大犯罪(例如恐怖份子或是組織犯罪)時始可調閱。但創作及媒體企業協會( the Creative and Meida Business Alliance, CMBA)則希望歐盟能放寬通聯紀錄調閱之限制,允許進行所有犯罪之調查時,特別是在查緝盜版犯罪之情形,能調閱通聯紀錄。   對於業者因配合保留通聯紀錄而增加的額外負擔,則可能透過轉嫁給消費者或是透過整府補貼的方式解決。

企業員工分紅改列費用,衝擊高科技產業

  經濟部、金管會刻正規畫將企業員工分紅改列費用,並預計自九十六年度實施,以與國際會計處理原則接軌,預料將對高科技業將造成相當之衝擊。   國際會計準則都是將分紅列為費用計算,唯獨台灣是用盈餘在分配員工分紅,為與國際會計準則接軌,將分紅列入費用應是未來趨勢,可讓財報更加透明化,新今年 4 月 28 日 立法院修正通過的商業會計法第 64 條規定,公司企業應將員工分配盈餘在財報上改列為費用,以公平市價作為計算基準,並將另採行政命令或解釋令公布入帳方式。   不過員工分紅若以市價列入費用,公司帳上賺的錢就會減少,尤其是高價股、高配股的公司影響尤甚;另一方面,新規定亦可能使這些公司趕採股票選擇權,以或提高底薪、現金分紅等方式來降低衝擊,否則若是獲利都被「員工配股」稀釋光了,財報會非常難看。因此,高科技業者則希望主管機關能放寬買回庫藏股分配員工及員工認股權證規定,以降低衝擊。

TOP