2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。
該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。
實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之:
一、人員面:
1.員工(教育訓練、合約)
在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。
在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。
2.生成式AI工具提供者(合約)
針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。
二、技術方面:
建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。
綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
德國第二部開放資料法案簡介 資訊工業策進會科技法律研究所 2023年03月25日 壹、前言 德國聯邦政府於2021年7月16日通過「第二部開放資料法案」(Zweiten Open-Data-Gesetz),包含修正《電子政務促進法(電子化政府法)》(E-Government-Gesetz,EGovG)第12a條,以及修正《資訊再利用法》(Informationsweiterverwendungsgesetz,IWG)並更名為《公部門資料使用法》(Datennutzungsgesetz - DNG),並於同年月23日生效。 修正目的係為充分發揮資料開放政策之潛力,建立一個初步的監管框架,改善資料提供、提高標準化及互通性的問題,以進一步提高資料之可用性。另外,也為轉換歐盟於2019年6月修正《開放資料與公部門資訊再利用指令》(DIRECTIVE (EU) 2019/1024,Open Data and the re-use of Public Sector Information Directive,下稱開放資料指令)[1]。 資料來源:作者自繪 圖一 「德國第二部開放資料法案」立法沿革 以下分別介紹電子化政府法第12a條及《公部門資料使用法》的修法內容: 貳、修法內容 一、電子化政府法第12a條 2017年7月13日,德國在《電子化政府法》新增第12a條「聯邦直接行政機關開放資料」(Offene Daten der Behörden der unmittelbaren Bundesverwaltung)規定,做為「聯邦政府」進行開放政府資料的法源[2]。本次修法法案,調整電子化政府法第12a條的部分條文,並改稱標題為「聯邦開放資料授權命令」,課予聯邦政府之政府資料開放義務(但仍未賦權民眾依據本法要求開放特定之政府資料)。以下簡介新舊規範比較: (一)受規範主體範圍:所有聯邦機關 舊法限於「直接從屬於聯邦政府的行政機關」,不包含自治團體(如邦政府)、公立機構、公立法人、公立基金會、公立大學等[3]。 新法則擴大主體範圍,不限於「直接從屬於聯邦政府的行政機關」,而涵蓋所有「聯邦機關」(Die Behörden des Bundes)(第1條),包含公營造物、公法社團法人及公法財團法人等[4];這些新適用主體開放資料的緩衝期,為法規生效後12個月內應首次提供。不過,適用主體仍不包含自治團體(如邦政府)與公權力受託人[5]。 (二)受規範客體範圍 同舊法,本法所稱的資料,仍為「由聯邦機關為完成公共任務所蒐集,或由受委託之第三方代表聯邦機關所蒐集之資料」,且包含「研究資料」,並應符合以下5款條件: 1.以電子方式儲存、以集合形式結構化(尤其適用於列表和表格)。 2.存在於該機關之外的事實,但與該機關有關者 3.非由聯邦機關處理其他資料所產生的結果 4.調查後未經過處理者 但有以下情形時可以處理後再開放:(1)為糾正錯誤而處理;(2)基於法律或事實原因而處理,例如依個資法規定匿名)。 5.資料涉及個人時,匿名化且無法再識別個資者。 舊法中,以負面表述的方式,提及涉及個資保護事由時,不開放資料;新法則增加正面表述,資料雖涉及個人,但若已去識別化且無法再識別者,即可作為開放客體。 (三)開放原則及例外 與舊法相同,採取「預設開放原則」(Open by Default),即已經完成電子化,且不具例外理由時,聯邦機關即須開放這些資料。 例外則是符合以下情形者,聯邦機關不須提供資料: 1.資訊自由法規定不公開之政府資料 根據資訊自由法(Informationsfreiheitsgesetz,IFG)第3、4及6條(涉及特殊公共利益的資料、保護官方決策程序的資料、保護智慧財產權及營業秘密),不具取用權(Zugangsrecht,right of access)或僅具有限取用權的資料(與舊法相同)。 2.只有在第三方參與後,取用權才存在的資料(與舊法相同) 例如依據相關法規規定,須經過聽取第三方意見的程序(如聽證會),或須衡量第三人利益,才能提供資料的情形。[6] 3.資料由非受公權力委託之第三方建置,且非法律規定有傳輸義務者(與舊法相同) 4.已透過其他管道開放之研究資料(新法新增) 基於研究目的所蒐集之資料,且已透過開放取用(open access)的網路免費提供者,無須再提供;但仍可自願於國家詮釋資料入口網站(GovData)開放。 此為新法新增,不同於舊法,「基於研究目的所蒐集之資料」應開放提供,但法規特別規定如果已經基於其他原因已可開放取用者,即依照原先狀態繼續開放取用,機關無義務再透過其他管道提供[7]。 5.受銀行保密義務保護之資料(新法新增) 6.含有個人資料的資料集 特別從前款「資訊自由法規定不公開之政府資料」拉出,單獨成項(新增於電子化政府法第12a條第3a項)作為強調。 (四)資料提供方式 1.原則蒐集後立即提供,但研究資料可延後 新法新增為研究目的所蒐集之資料的提供時點彈性,研究資料若要提供,則應於研究計畫完成且研究目的完成後才能提供[8]。 2.以機器可讀格式提供 3.提供詮釋資料於「國家詮釋資料入口網站」(GovData) 4.免費、隨時、無須理由、不須註冊、透過公開使用網路提供資料檢索 5.可不受限制的再利用 (五)各部門設立協調員與中央辦公室聯繫 聯邦政府應設立中央辦公室,負責就聯邦機關提供資料作為開放資料時給予建議,並作為各邦負責開放資料辦公室的聯絡點。 聯邦各機關也應任命一名開放資料協調員,作為各部門與中央辦公室聯繫的聯絡人,並致力於識別、提供及再利用其所屬部門之開放資料。 (六)推行開放資料 與舊法相同,聯邦政府應每2年提出研究報告,向聯邦眾議院報告透過聯邦機關(不包含公營事業)開放資料的進展。 新法另增訂兩項事宜: 1.聯邦政府應評估開放資料法之適用主體擴展到自治團體、邦政府、受委託行使公權力的自然人與法人的可能性。 2.授權聯邦內政部與其他聯邦權責單位及聯邦政府專員達成協議,訂定法規命令規範開放資料之具體作法。 (七)公務員免責 聯邦機關沒有義務檢查所提供的資料的正確性、完整性、可信性。 (八)第12a條不能作為提供資料的請求權依據 電子化政府法於第12a條第1項後段明文該條不能作為提供資料的請求權依據,因此人民未被賦予得以請求政府開放資料之權利。[9] 二、公部門資料使用法 德國於2006年轉換2003年版的歐盟《公部門資訊再利用指令》(Directive 2003/98/EC,下稱PSI指令),制定《資訊再利用法》(Informationsweiterverwendungsgesetz,IWG),並隨著PSI指令於2013年的修正(Directive 2013/37/EU)而於2015年修正。本次再基於PSI指令於2019年修正為開放資料指令,《資訊再利用法》隨之全部修正,並更名為《公部門資料使用法》(Datennutzungsgesetz - DNG),以下簡介規範內容: (一)立法目的 《公部門資料使用法》的立法目的為「政府資訊再利用」、「改善公部門資料在商業目的之使用」,而統一政府資料的格式、授權、開放原則、收費原則及非歧視原則等內容。公部門資料使用法第1條第2項明文強調,本法未課予提供資料之義務或賦予近用資料之權利。 另外,本法係用以統一國內各相關法規之規範標準,使聯邦及各邦的資料,都能順利被用於商業及非商業利用[10]。 (二)適用主體 1.公部門機構 包含聯邦機關、地方自治團體(如邦政府),及公營造物、公法社團法人及公法財團法人等。 2.提供公共服務之公營事業 本次修法,納入提供公共服務(例如能源及交通)之公營事業,這些公共服務公營事業包含獨佔事業及處於競爭市場者。 3.提供研究資料的大學、研究機構及研究資助機構 (三)適用客體 1.一般政府資料 公部門機構與公共服務依法有義務提供之資料、依法有近用權之人可近用之資料。 2.高價值資料集 公部門機構與公共服務,若要提供歐盟開放資料指令之6種主題類別高價值資料集時,須透過適當之API、機器可讀、可批量下載的方式提供。 3.研究資料 研究資料係指,由公共資助的科學研究活動中所蒐集,或作為證據使用,或用以驗證研究成果的數位形式紀錄。且已透過大學、研究機構、研究資助機構、所屬研究人員或計畫資料庫開放取用(open access)。 若研究資料與合法商業利益、知識轉移活動或第三方智慧財產權等原因相衝突,則不適用本法方式提供。 4.不適用客體 與個資保護相衝突的資料、與商業秘密相衝突的資料、國家安全及公共安全資料、關鍵基礎設施保密資訊、保密統計資料、涉及第三人智慧財產權資料、不屬公部門機關公務範圍之資料、標誌及徽章、公共節目及廣播、文化機構資料、中學以下教育機構資料、中學以上教育機構非研究資料。 (四)提供格式 1.提供既有之可利用格式資料 聯邦機關或公營事業,只須提供既有的、已電子化、機器可讀、FAIR資料原則(可近用、可搜尋、可再利用、可互通格式)、符合開放標準(確保可互通)的資料。 2.詮釋資料 機器可讀的詮釋資料,應透過國家詮釋資料入口網站(GovData)提供。 3.動態資料 如果資料具有波動性或時效性的特性,而須頻繁或即時更新時,則聯邦機關或公營事業應透過API及批量下載方式,在資料蒐集後立即提供。 (五)授權提供 原則上不一定要以授權方式提供資料,但一般公立圖書館、大學圖書館、博物館及檔案館中具有智慧財產權的資料,以及提供公共服務的公營事業的資料,皆應以授權方式提供。使用授權條款時,應盡可能使用開放授權,或不做非必要的使用限制。 (六)資料原則 1.「概念上與標準化之開放」原則 應盡可能依據「概念上與標準化之開放」原則(der Grundsatz „konzeptionell und standardmäßig offen“)建置本法規範範圍的資料。立法理由稱,依此原則,本法適用之資料應盡可能以「預設開放」方式提供[11]。 2.收費原則 一般聯邦機關,應免費提供資料,但允許因以下原因收取邊際成本補償費用,且收費標準應透明公開:a.資料複製、提供及傳輸;b.個資匿名化措施;c.營業秘密保護措施。 例外可收取費用的機關則有以下3類,且收費標準亦應透明公開:a.須自籌財源履行公務委託之機關;b.一般公立圖書館、大學圖書館、博物館及檔案館;c.提供公共服務的公營事業。 所有聯邦機關及提供公共服務的公營事業,提供高價值資料與研究資料時,應免費且不得收取邊際成本補償費。但一般公立圖書館、大學圖書館、博物館及檔案館提供高價值資料與研究資料時,可收取費用。 3.非歧視原則及禁止排他原則(不得與他人訂定專屬授權) 參、法律適用關係 (一)電子化政府法之法律適用通則規定 電子化政府法第12a條與其他相關法規涉及「資料」規定之間的關係,須依據電子化政府法第1條第4項法律適用通則規定處理,該條項規定「當有相同內容的規定或相衝突的規定存在時,不適用本法」,因此在電子化政府法第12a條與其他相關法規的適用優先順序上,僅在沒有聯邦法律對於「資料提供」有相同或相矛盾的規定情況下,才能適用電子化政府法第12a條,反之,當有任何其他法規涉及「資料提供」時,電子化政府法第12a條就退居於次位,以使其他法規的立法目的仍可實現,也能避免與國際標準或歐盟法規的要求重複、矛盾或衝突[12]。 (二)電子化政府法第12a條與公部門資料使用法之適用關係 雖然公部門資料使用法未課予提供資料之義務或賦予近用資料之權利,但由於仍規範資料之標準及格式,使政府資料能再利用,所以仍被認為涉及「資料提供」,而有法律適用優先順序問題。 因此,電子化政府法第12a條開放資料法的適用主體及客體,基本上適用公部門資料使用法的相關規定,包含政府資料的格式、授權、開放原則、收費原則及非歧視原則等內容。例如:圖書館所藏資料,若涉及高價值資料的提供時,圖書館可收取費用。 肆、評析 德國聯邦政府透過於電子化政府法制定開放資料法相關規範,除了促使聯邦政府機關將政府資料全部改以電子化、機器可讀方式建置以外,也促使政府資料以「預設開放」為原則建置,使政府資料能更被加值活化再利用。 而2021年的修正,更將「基於執行政府出資研究計畫目的所蒐集之資料」,以及「公營造物、公法社團法人及公法財團法人等主體所建置的政府資料」納入開放客體,擴大開放政府資料的範圍。 保護機敏資料部分,除了原先規範得不開放具第三方智慧財產權之資料,以及具國家安全、特殊公共利益等資料以外,新修正法案也加強規定個資保護(含有個人資料之資料集不開放,僅開放已匿名化資料),以及增列「受銀行保密義務保護之資料」為不須開放資料。 另外新修正的法案,也加上許多推行開放資料的措施,包含「聯邦各部門應任命一名開放資料協調員」、「開始評估政府開放資料義務要求,擴展到邦政府及受委託行使公權力的可能性」,以及「授權政府開放資料主管機關聯邦內政部,訂定法規命令規範開放資料之具體作法」等。 綜上,德國透過開放政府資料專法及公部門資料使用法,建立開放資料的格式標準及開放原則,帶頭推動國內的資料開放環境,以促進資料的進一步活化再利用。 [1]Council Directive 2019/1024, art. 17, 2019 O.J. (L 172) 56, 77. [2]立法理由A、IV、第1段:「聯邦行政對提供資料開放之監管,就其性質而言,屬於聯邦之獨立事務,因此僅能由聯邦政府本身監管。」Deutscher Bundestag, BT-Drucksache 19/27442 (Gesetzentwurf der Bundesregierung), S. 19, https://dserver.bundestag.de/btd/19/274/1927442.pdf (last visited Mar. 21, 2023). [3]Wiss. Mit. Heiko Richter, „Open Government Data“ für Daten des Bundes - Die Open-Data-Regelung der §§ 12 a, 19 E-Government-Gesetz, NVwZ, 2017(19), 1408, 1409 (2017). [4]立法理由A、II、第1段。Deutscher Bundestag (Fn. 2), S. 17. https://dserver.bundestag.de/btd/19/274/1927442.pdf (last visited Mar. 21, 2023). [5]Deutscher Bundestag (Fn. 2), S. 2. [6]Von Dr. Ralf Schnieders, Die neue Open-(Government)-Data-Gesetzgebung in Frankreich und in Deutschland, Die Öffentliche Verwaltung, 2018(5), 175, 183 (2018); Deutscher Bundestag, Drucksache 18/11614 (Gesetzentwurf der Bundesregierung), S. 20, http://dipbt.bundestag.de/dip21/btd/18/116/1811614.pdf (last visited Mar. 21, 2023) [7]Deutscher Bundestag (Fn. 2), S. 30. [8]Deutscher Bundestag (Fn. 2), S. 30-31. [9]Wiss. Mit. Heiko Richter (Fn.3), S. 1412. [10]Deutscher Bundestag (Fn. 2), S. 18. [11]Deutscher Bundestag (Fn. 2), S. 33. [12]Deutscher Bundestag, Drucksache 18/11614 (Gesetzentwurf der Bundesregierung), S. 17, http://dipbt.bundestag.de/dip21/btd/18/116/1811614.pdf (last visited Mar. 21, 2023); Wiss. Mit. Heiko Richter (Fn.3), S. 1412.
數位證據之刑事證據能力相關議題研究 德國因應歐盟一般資料保護規則(GDPR)之通過,即將進行該國資料保護法(BDSG)修正德國聯邦資訊技術,電信和新媒體協會(bitkom)於2016年9月2日釋出將以歐盟新制定之一般資料保護規則(GDPR)內容為基礎,調整德國聯邦資料保護法(BDSG)之修法動向。 德國政府正在緊鑼密鼓地調整德國的資料保護立法,使之與歐盟GDPR趨於一致。已知未來將由“一般聯邦資料保護法”取代現行的聯邦法律。草案內容雖尚未定稿,但修正方向略有以下幾點: 首先,德國未來新法不僅參考GDPR、也試圖將該法與GDPR及歐盟2016年5月4日公告之歐盟資訊保護指令Directive(EU)2016/680相互連結。該指令係規範對主管機關就自然人為預防,調查,偵查等訴追刑事犯罪或執行刑事處罰目的,處理個人資料時的保護以及對資訊自由流通指令。 其次,新法將遵循GDPR的結構,並利用一些除外規定,如:在資料處理時企業應指派九人以上資料保護官(DPO)的義務。某些如通知當事人的義務規定,亦有可能在存有更高的利益前提下,限縮其履行範圍。此意味某些通知義務有可能得不適用,例如履行該義務需要過於龐大人力、資金支出、耗費過多等因素。 第三,聯邦法律將保留一些規定,如上傳給信用調查機構的條款、雇傭契約中雇用方面處理個人資料的條款,以及在公眾開放地區使用電子光學裝置監視的條款等。 最後,立法修正動向值得注意的重點尚有,(1)未來德國立法者將如何應對新的歐洲資料保護委員會(EDPB)中德國代表的地位(represe。由於EDPB將發布具有約束力的決定,針對爭議內容的決定意見,德國內部顯然應該統一意見。蓋因迄今為止的德國聯邦資料保護監察官(17個)經常提出不同的見解。此外,(2)還應該觀察聯邦資料保護監察官是否應該賦予權限,向法院提出對歐盟爭議決定或法律救濟,使案件進入德國法院,以爭執歐盟執委會所為之決定是否具備充足理由。前此,德國聯邦參議院(代表十六邦)2016年5月已要求聯邦政府引進新規定,使資訊監察保護官有請求法院救濟之權。這項源於安全港協議判決的討論,將來有可能提供德國資料保護監察官,挑戰隱私盾協議的可能性。但新法案是否會解決這一問題,這還有待觀察。 可預見在2017年9月下一屆德國聯邦議會選舉前,將通過法案。
G7第四屆資料保護與隱私圓桌會議揭示隱私保護新趨勢G7第四屆資料保護與隱私圓桌會議揭示隱私保護新趨勢 資訊工業策進會科技法律研究所 2025年03月10日 七大工業國組織(Group of Seven,下稱G7)於2024年10月10日至11日在義大利羅馬舉辦第四屆資料保護與隱私機構圓桌會議(Data Protection and Privacy Authorities Roundtable,下稱圓桌會議),並發布「G7 DPAs公報:資料時代的隱私」(G7 DPAs’ Communiqué: Privacy in the age of data,下稱公報)[1],特別聚焦於人工智慧(AI)技術對隱私與資料保護的影響。 壹、緣起 由美國、德國、英國、法國、義大利、加拿大與日本的隱私主管機關(Data Protection and Privacy Authorities, DPAs)組成本次圓桌會議,針對數位社會中資料保護與隱私相關議題進行討論,涵蓋「基於信任的資料自由流通」(Data Free Flow with Trust, DFFT)、新興技術(Emerging technologies)、跨境執法合作(Enforcement cooperation)等三大議題。 本次公報重申,在資通訊技術主導的社會發展背景下,應以高標準來審視資料隱私,從而保障個人權益。而DPAs作為AI治理領域的關鍵角色,應確保AI技術的開發和應用既有效且負責任,同時在促進大眾對於涉及隱私與資料保護的AI技術認識與理解方面發揮重要作用[2]。此外,公報亦強調DPAs與歐盟理事會(Council of Europe, CoE)、經濟合作暨發展組織(Organisation for Economic Co-operation and Development, OECD)、亞太隱私機構(Asia Pacific Privacy Authorities, APPA)、全球隱私執行網路(Global Privacy Enforcement Network, GPEN)及全球隱私大會(Global Privacy Assembly, GPA)等國際論壇合作的重要性,並期望在推動資料保護與建立可信賴的AI技術方面作出貢獻[3]。 貳、重點說明 基於上述公報意旨,本次圓桌會議上通過《關於促進可信賴AI的資料保護機構角色的聲明》(Statement on the Role of Data Protection Authorities in Fostering Trustworthy AI)[4]、《關於AI與兒童的聲明》(Statement on AI and Children)[5]、《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》(Reducing identifiability in cross-national perspective: Statutory and policy definitions for anonymization, pseudonymization, and de-identification in G7 jurisdictions)[6],分別說明重點如下: 一、《關於促進可信賴AI的資料保護機構角色的聲明》 繼2023年第三屆圓桌會議通過《關於生成式AI聲明》(Statement on Generative AI)[7]後,本次圓桌會議再次通過《關於促進可信賴AI的資料保護機構角色的聲明》,旨在確立管理AI技術對資料保護與隱私風險的基本原則。G7 DPAs強調許多AI技術依賴個人資料的運用,這可能引發對個人偏見及歧視、不公平等問題。此外,本聲明中還表達了擔憂對這些問題可能透過深度偽造(Deepfake)技術及假訊息擴散,進一步對社會造成更廣泛的不良影響[8]。 基於上述考量,本聲明提出以下原則,納入G7 DPAs組織管理的核心方針[9]: 1. 以人為本的方法:G7 DPAs應透過資料保護來維護個人權利與自由,並在AI技術中提供以人權為核心的觀點。 2. 現有原則的適用:G7 DPAs應審視公平性、問責性、透明性和安全性等AI治理的核心原則,並確保其適用於AI相關框架。 3. AI核心要素的監督:G7 DPAs應從專業視角出發,監督AI的開發與運作,確保其符合負責任的標準,並有效保護個人資料。 4. 問題根源的因應:G7 DPAs應在AI的開發階段(上游)和應用階段(下游)找出問題,並在問題擴大影響前採取適當措施加以解決。 5. 善用經驗:G7 DPAs應充分利用其在資料領域的豐富經驗,謹慎且有效地應對AI相關挑戰。 二、《關於AI與兒童的聲明》 鑒於AI技術發展可能對於兒童和青少年產生重大影響,G7 DPAs發布本聲明表示,由於兒童和青少年的發展階段及其對於數位隱私的瞭解、生活經驗有限,DPAs應密切監控AI對兒童和青少年的資料保護、隱私權及自由可能造成的影響程度,並透過執法、制定適合年齡的設計實務守則,以及發佈面向兒童和青少年隱私權保護實務指南,以避免AI技術導致潛在侵害兒童和青少年隱私的行為[10]。 本聲明進一步闡述,當前及潛在侵害的風險包含[11]: 1. 基於AI的決策(AI-based decision making):因AI運用透明度不足,可能使兒童及其照顧者無法獲得充足資訊,以瞭解其可能造成重大影響的決策。 2. 操縱與欺騙(Manipulation and deception):AI工具可能具有操縱性、欺騙性或能夠危害使用者情緒狀態,促使個人採取可能危害自身利益的行動。例如導入AI的玩具可能使兒童難以分辨或質疑。 3. AI模型的訓練(Training of AI models):蒐集和使用兒童個人資料來訓練AI模型,包括從公開來源爬取或透過連線裝置擷取資料,可能對兒童的隱私權造成嚴重侵害。 三、《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》 考慮到個人資料匿名化、假名化及去識別化能促進資料的創新利用,有助於最大限度地減少隱私風險,本文件旨在整合G7成員國對於匿名化、假名化與去識別化的一致理解,針對必須降低可識別性的程度、資訊可用於識別個人的程度、減少可識別性的規定流程及技術、所產生的資訊是否被視為個人資料等要件進行整理,總結如下: 1. 去識別化(De-identification):加拿大擬議《消費者隱私保護法》(Consumer Privacy Protection Act, CPPA)、英國《2018年資料保護法》(Data Protection Act 2018, DPA)及美國《健康保險可攜性及責任法》(Health Insurance Portability and Accountability Act , HIPAA)均有去識別化相關規範。關於降低可識別性的程度,加拿大CPPA、英國DPA規定去識別化資料必須達到無法直接識別特定個人的程度;美國HIPAA則規定去識別化資料須達到無法直接或間接識別特定個人的程度。再者,關於資料去識別化的定性,加拿大CPPA、英國DPA認定去識別化資料仍被視為個人資料,然而美國HIPAA則認定去識別化資料不屬於個人資料範疇。由此可見,各國對去識別化規定仍存在顯著差異[12]。 2. 假名化(Pseudonymization):歐盟《一般資料保護規則》(General Data Protection Regulation, GDPR)及英國《一般資料保護規則》(UK GDPR)、日本《個人資料保護法》(個人情報の保護に関する法律)均有假名化相關規範。關於降低可識別性的程度,均要求假名化資料在不使用額外資訊的情況下,須達到無法直接識別特定個人的程度,但額外資訊應與假名化資料分開存放,並採取相應技術與組織措施,以確保無法重新識別特定個人,因此假名化資料仍被視為個人資料。而關於假名化程序,日本個資法明定應刪除或替換個人資料中可識別描述或符號,歐盟及英國GDPR雖未明定具體程序,但通常被認為採用類似程序[13]。 3. 匿名化(Anonymization):歐盟及英國GDPR、日本個資法及加拿大CPPA均有匿名化相關規範。關於降低可識別性的程度,均要求匿名化資料無法直接或間接識別特定個人,惟可識別性的門檻存在些微差異,如歐盟及英國GDPR要求考慮控管者或其他人「合理可能用於」識別個人的所有方式;日本個資法則規定匿名化資料之處理過程必須符合法規標準且不可逆轉。再者,上述法規均將匿名化資料視為非屬於個人資料,但仍禁止用於重新識別特定個人[14]。 參、事件評析 本次圓桌會議上發布《關於促進可信賴AI的資料保護機構角色的聲明》、《關於AI與兒童的聲明》,彰顯G7 DPAs在推動AI治理原則方面的企圖,強調在AI技術蓬勃發展的背景下,隱私保護與兒童權益應成為優先關注的議題。與此同時,我國在2024年7月15日預告《人工智慧基本法》草案,展現對AI治理的高度重視,融合美國鼓勵創新、歐盟保障人權的思維,針對AI技術的應用提出永續發展、人類自主、隱私保護、資訊安全、透明可解釋、公平不歧視、問責等七項原則,為國內AI產業與應用發展奠定穩固基礎。 此外,本次圓桌會議所發布《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》,揭示各國在降低可識別性相關用語定義及其在資料保護與隱私框架中的定位存在差異。隨著降低可識別性的方法與技術不斷創新,這一領域的監管挑戰日益突顯,也為跨境資料流動越發頻繁的國際環境提供了深化協調合作的契機。在全球日益關注資料保護與隱私的趨勢下,我國個人資料保護委員會籌備處於2024年12月20日公告《個人資料保護法》修正草案,要求民間業者設置個人資料保護長及稽核人員、強化事故通報義務,並針對高風險行業優先實施行政檢查等規定,以提升我國在數位時代的個資保護水準。 最後,本次圓桌會議尚訂定《2024/2025年行動計畫》(G7 Data Protection and Privacy Authorities’ Action Plan)[15],圍繞DFFT、新興技術與跨境執法合作三大議題,並持續推動相關工作。然而,該行動計畫更接近於一項「基於共識的宣言」,主要呼籲各國及相關機構持續努力,而非設定具有強制力或明確期限的成果目標。G7 DPAs如何應對數位社會中的資料隱私挑戰,並建立更順暢且可信的國際資料流通機制,將成為未來關注的焦點。在全球共同面臨AI快速發展所帶來的機遇與挑戰之際,我國更應持續關注國際趨勢,結合自身需求制訂相關法規以完善相關法制,並積極推動國際合作以確保國內產業發展銜接國際標準。 [1]Office of the Privacy Commissioner of Canada [OPC], G7 DPAs’ Communiqué: Privacy in the age of data (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/communique-g7_241011/ (last visited Feb 3, 2025). [2]Id. at para. 5. [3]Id. at para. 7-9. [4]Office of the Privacy Commissioner of Canada [OPC], Statement on the Role of Data Protection Authorities in Fostering Trustworthy AI (2024), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2024/s-d_g7_20241011_ai/ (last visited Feb 3, 2025). [5]Office of the Privacy Commissioner of Canada [OPC], Statement on AI and Children (2024), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2024/s-d_g7_20241011_child-ai/ (last visited Feb 3, 2025). [6]Office of the Privacy Commissioner of Canada [OPC], Reducing identifiability in cross-national perspective: Statutory and policy definitions for anonymization, pseudonymization, and de-identification in G7 jurisdictions (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/de-id_20241011/ (last visited Feb 3, 2025). [7]Office of the Privacy Commissioner of Canada [OPC], Statement on Generative AI (2023), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2023/s-d_20230621_g7/ (last visited Feb 3, 2025). [8]Supra note 4, at para. 11. [9]Supra note 4, at para. 18. [10]Supra note 5, at para. 5-6. [11]Supra note 5, at para. 7. [12]Supra note 6, at para. 11-15. [13]Supra note 6, at para. 16-19. [14]Supra note 6, at para. 20-25. [15]Office of the Privacy Commissioner of Canada [OPC], G7 Data Protection and Privacy Authorities’ Action Plan (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/ap-g7_241011/ (last visited Feb 3, 2025).