2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。
該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。
實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之:
一、人員面:
1.員工(教育訓練、合約)
在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。
在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。
2.生成式AI工具提供者(合約)
針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。
二、技術方面:
建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。
綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
印度政府近年來聚焦新創創業發展,其成果更是驚人,根據一份研究報告,印度的科技產品相關新創事業光是在2016年就已達4700家以上,在當年排名全球第三,僅次於美國與英國,且預計在2020年會有2.2倍左右成長率,亦即數量翻倍。1 現今印度政府共計有超過50個新創事業獎勵補助等機制,分別由不同部門與單位執行,2 以下針對新創事業專利權補助之三大機制作介紹。 電子與資訊部門(Department of Electronics and Information Technology)、科學與工程研究委員會(Science and Engineering Research Board),以及生物科技產業研究輔助委員會(Biotechnology Industry Research Assistance Council),為三大對新創事業專利權之申請與握有,提供相關補助之印度政府部門。 (1) 電子與資訊部門之機制主要適用於人工智慧、資訊科技與軟體等產業,符合機制的新創業者申請國際專利權時,印度政府會提供15萬盧比(相當70萬台幣)或是總花費50%的補貼,補助金額看似多,但該機制有產業限制,且只施行至2019年11月30日。 (2) 科學與工程研究委員會之新創機制亦是對於專利申請有金錢上之補貼,特色在於適用產業十分廣泛,舉如化學、硬體、醫療、農業、航空、通訊、建築、能源等產業皆在機制內,重點要件在於新創業者需是已進入概念驗證(proof of concept)之階段,再者,該新創機制沒有施行期限。 (3) 生物科技產業研究輔助委員會之創新機制沒有適用產業與期限的限制,但適用對象確有限制,只限印度公民與成功展現概念驗證之創新者,該機制特色在於:補貼是對於符合標準的整個專案計畫,非只對於專利權。金額大約是20萬至500萬盧幣(約台幣10萬至200萬),或是整個專案計畫50%-90%花費。 印度政府對於新創業者之專利權相關補助共有三個機制可以選擇,優點在於新創業者可以依自己的展業別、發展階段、預算及相關因素自行選擇最有利的機制,以達到獲取補助最高的成功率。單一新創補助機制過於硬性,多數方案則可以提供選擇性與彈性。台灣就新創事業多提供貸款融資服務、資金補助計畫、或稅務減免等政策,尚未針對新創事業專利權做特定之政策優惠,或許台灣能在印度此三大專利權補助機制有可學之處。
WhatsApp因違反GDPR遭愛爾蘭資料保護委員會開罰2.25億歐元愛爾蘭資料保護委員會(Data Protection Commission,DPC)於今(2021)年9月宣告WhatsApp Ireland Limited(下稱WhatsApp)違反歐盟一般資料保護規則(General Data Protection Regulation,GDPR)並處以高額裁罰。 DPC自2018年12月起主動調查WhatsApp是否違反GDPR下的透明化義務,包括WhatsApp透過其軟體蒐集用戶與非用戶的個人資料時,是否有依GDPR第12條至第14條提供包括個資處理目的、法律依據等相關資訊,以及該資訊有無符合透明化原則等,其中又以WhatsApp是否提供「如何與其他關係企業(如Facebook)分享個資」之相關資訊為調查重點。 歷經長時間的調查,DPC作為本案領導監管機關(lead supervisory authority),於2020年12月依GDPR第60條提交裁決草案予其他相關監管機關(supervisory authorities concerned)審議。惟DPC與其他相關監管機關就該裁決草案無法達成共識,DPC復於今年6月依GDPR第65條啟動爭議解決程序,而歐洲資料委員會(European Data Protection Board)在同年7月對裁決草案中的疑義做出有拘束力之結論,要求DPC提高草案中擬定的罰鍰金額。 DPC最終在今年9月2日公布正式裁決,認定WhatsApp未依第12條至第14條提供資訊予「非軟體用戶」之資料主體,而「軟體用戶」的部分也僅有41%符合規範,嚴重違反GDPR第5(1)(a)條透明化原則。據此,以母公司Facebook全集團營業額作為裁罰基準,DPC對WhatsApp處2.25億歐元之罰鍰,為GDPR生效以來第二高的裁罰,並限期3個月改善。
韓國特許廳推動「技術公開網路服務」,公開技術達到防禦性功能且促進公眾利用韓國特許廳自2000年12月開始提供「技術公開網路服務」,透過此網站服務,研究人員可將其研發的技術公開、並登載在韓國特許廳的技術公開網站,藉以取得具公信力的公開日期。假若網站上公開的技術與先申請專利的其他技術相似,但其公開日期較早,那麼網站上公開的技術會被認為他人申請專利時的先前技術(prior art),他人就無法取得專利權。此一服務的目的在於希望企業或個人的研究開發成果可防止他人以相同或類似的技術申請專利,作為一種防禦手段。另公開的研發成果也可提供公眾免費使用,進而促進整體產業的發展。 為改善「技術公開網路服務」,增加使用上之便利性,韓國特許廳2011年10月起推出新的「技術公開網路服務」系統,規定必須載明公開的必要記載項目(包括標題、相關領域、目的、技術組成內容),以利其他人得以簡便地了解被公開的技術內容。利用人可到韓國特許廳建置之「專利資訊檢索服務(Korea Intellectual Property Rights Information Service, KIPRIS) 」網站進行檢索,搜尋所需之技術內容。 研發者可以將自己的發明想法公開,防止他人就同一或類似技術申請專利;同時任何人皆可查詢利用已經公開的技術,避免重複研發,也可讓業界掌握技術發展的最新動向,以促進技術之活用。
醫療物聯網(The Internet of Medical Things, IoMT)醫療物聯網(The Internet of Medical Things, IoMT)之意義為可通過網路,與其它使用者或其它裝置收集與交換資料之裝置,其可被用來讓醫師更即時地瞭解病患之狀況。 就運用的實例而言,於診斷方面,可利用裝置來連續性地收集關鍵之醫學參數,諸如血液生化檢驗數值、血壓、大腦活動和疼痛程度等等,而可幫助檢測疾病發作或活動的早期跡象,從而改善反應。於療養方面,由於患者的手術後恢復時間是整個成本花費之重要部分,故縮短療養時間是減少成本之重要要素。可利用穿戴式感測器來幫助運動、遠端監控,追蹤各種關鍵指標,警示護理人員及時作出回應,並可與遠距醫療相結合,使加速恢復更加容易。於長期護理方面,可藉由裝置之測量與監控來避免不良結果與延長之恢復期。 由於機器學習和人工智慧之共生性增長,醫療物聯網之價值正在增強。於處理來自於感測器醫療裝置之大量連續資訊流時,資料分析和機器學習可更快地提供可據以執行之結論以幫助治療過程。惟醫療物聯網亦可能面臨安全與標準化之挑戰。由於醫療保健的資料是駭客的主要目標,任何與網路連接之設備都存在安全性風險。此外,隨著相關裝置被廣泛地運用,即需要標準化以便利裝置之間的通訊,製造商和監管機構皆需尋找方法來確保裝置可在各種平台上安全地通訊。