日本獨立行政法人情報處理推進機構於2024年7月4日發布利用AI時的安全威脅、風險調查報告書。
隨著生成式AI的登場,日常生活以及執行業務上,利用AI的機會逐漸增加。另一方面,濫用或誤用AI等行為,可能造成網路攻擊、意外事件與資料外洩事件的發生。然而,利用AI時可能的潛在威脅或風險,尚未有充分的對應與討論。
本調查將AI區分為分辨式AI與生成式AI兩種類型,並對任職於企業、組織中的職員實施問卷調查,以掌握企業、組織於利用兩種類型之AI時,對於資料外洩風險的實際考量,並彙整如下:
1、已導入AI服務或預計導入AI服務的受調查者中,有61%的受調查者認為利用分辨式AI時,可能會導致營業秘密等資料外洩。顯示企業、組織已意識到利用分辨式AI可能帶來的資料外洩風險。
2、已導入AI利用或預計導入AI利用的受調查者中,有57%的受調查者認為錯誤利用生成式AI,或誤將資料輸入生成式AI中,有導致資料外洩之可能性。顯示企業、組織已意識到利用生成式AI可能造成之資料外洩風險。
日本調查報告顯示,在已導入AI利用或預計導入AI利用的受調查者中,過半數的受調查者已意識到兩種類型的AI可能造成的資料外洩風險。已導入AI服務,或未來預計導入AI服務之我國企業,如欲強化AI資料的可追溯性、透明性及可驗證性,可參考資策會科法所創意智財中心所發布之重要數位資料治理暨管理制度規範;如欲避免使用AI時導致營業秘密資料外洩,則可參考資策會科法所創意智財中心所發布之營業秘密保護管理規範,以降低AI利用可能導致之營業秘密資料外洩風險。
本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
日本為提高農產品品質及附加價值,近年積極推動智慧農業,鼓勵利用AI等新技術研發農業產品和相關服務,惟技術研發需要使用大量資料訓練AI模型,部分農業工作者擔心自身經驗及知識等資料在研發過程中外洩,為避免上述狀況發生,農林水產省於2019年7月9日召開「農業AI利用契約指引檢討會」(農業分野におけるAIの利用に関する契約ガイドライン検討会),研議「農業AI利用契約指引」,防止在進行AI相關應用研發時,農業工作者提供之資料不慎外洩或遭到不當利用,導致其權益受損。 「農業AI利用契約指引檢討會」於2019年12月19日舉辦第3次會議,公布農業AI利用契約指引草案,草案內容包括(1)總論︰說明本指引之制定目的、農業與AI的關係,以及本指引與其他類似指引之差異和適用範圍;(2)農業AI產品、服務契約基本事項︰說明利用AI研發之農業產品和服務相關之智慧財產權,契約要件(契約目的及契約當事人等)及農業AI模型研發流程等基本概念;(3)農業AI產品、服務契約注意事項︰說明AI產品和服務契約之特徵和注意事項,以及利用AI等新技術進行研發之當事人訂定契約時應注意的問題,如農業工作者所提供之資料的重要性、以及個人資料的處理方式等;(4)契約範本︰針對農業AI研發契約、農業AI產品和服務利用契約,以及向第三方提供農業資料之契約,說明契約內容重點及提供範本供作參考。
歐盟計畫降低學名藥壁壘 開罰Teva和Cephalon 6050萬歐元歐盟執行委員會(以下簡稱執委會)於2020年11月以延遲平價學名藥進入市場、違反歐盟反托拉斯法為由,裁罰以色列學名藥廠Teva和美國生物製藥公司Cephalon共6050萬歐元。 Cephalon販售的Modafinil是用於治療猝睡症的藥物,為長年佔Cephalon全球營業額40%以上的暢銷產品。儘管其主要專利已於2005年在歐洲到期,但Cephalon仍保有部分Modafinil的延續性專利(secondary patents)。原先欲以Modafinil學名藥進軍市場的Teva也有Modafinil的相關專利,然而Cephalon和Teva達成「延遲給付」(pay-for-delay)協議,Teva同意暫緩進入市場且不去挑戰Cephalon的專利。執委會經調查發現,該協議排除Teva成為Cephalon的市場競爭者,使Cephalon的專利即使到期多年產品仍可維持高價位。 延遲給付協議在專利和解上通常是合法行為,但執委會認為此舉使患者和健保體系無法即早受惠於市場競爭帶來的低價,協議廠商卻享有缺乏競爭所產生的額外利潤。歐盟日前發布的《歐洲藥品戰略》(Pharmaceutical Strategy for Europe)更強調藥品應是全民可負擔、可取得及安全的,而維持自由競爭對達成此目標至關重大。執委會認為延遲給付協議違反《歐盟運作條約》(Treaty on the. Functioning of the European Union, TFEU)第101條,以協議限制或扭曲歐盟內部市場競爭,故裁處高額罰款。2022年歐盟將採取措施降低學名藥進入市場的阻礙,考慮進行審查、要求廠商使其專利藥品在全歐盟境內都可被取得,否則將縮短其智財權的保護期間。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
澳洲擴大對中小企業之政府採購競爭機會聯邦採購規則(Commonwealth Procurement Rules)為澳洲財政部(Australia Government Department Of Finance)依公共治理、績效及課責法(Public Governance, Performance and Accountability Act 2013)授權所訂定之採購規範。澳洲財政部於2024年發布新修正之聯邦採購規則,並於同年7月1日生效。 新修正之聯邦採購規則除維持現行架構及核心精神外,另增訂聯邦供應商行為準則、擴大經濟效益評估、促進性別平等等措施,同時也擴大對中小企業之支援與協助。 為確保中小企業參與政府標案之公平競爭,新修正之聯邦採購規則要求澳洲政府在評估採購案時應適當提供中小企業競爭機會,並以符合最佳性價比之原則考量下列事項: 一、 向具有競爭力之中小企業進行採購之效益; 二、 中小企業參與競標之障礙,如投標之資金成本; 三、 中小企業之能力及對地區市場之貢獻; 四、 增加潛在供應商數量以最大化競爭所產生之效益,包含在合適之情況下,將大型專案拆分為數項小型專案。 此外,新修正之聯邦採購規則要求聯邦機構提高對中小企業採購之比例。依新修正之聯邦採購規則第5部分,超過澳幣10億元之採購契約,採購總金額中至少25%應係向中小企業採購,較修正前提高5%;超過澳幣2,000萬元之採購契約,採購總金額中則至少應有40%係向中小企業採購,較修正前提高5%。 本次修正是考量中小企業對於澳洲經濟有所貢獻,因此提高中小企業之採購比例,預計修正後亦可讓更多中小企業獲得採購機會。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。