為促進綠色轉型並提高對投資人之保護,歐洲銀行監理機關(European Banking Authority, EBA)、歐洲保險與職業年金監理機關(European Insurance and Occupational Pensions Authority, EIOPA)及歐洲證券與市場監理機關(European Securities and Market Authority, ESMA)於2024年6月18日針對永續金融揭露規則(Sustainable Finance Disclosure Regulation),向歐盟執委會(European Commission)發布共同意見。
現行的永續金融揭露規則於2019年制定並於2021年生效,其目的在提高金融產品服務的 ESG 揭露透明度和標準化,透過要求金融市場參與者提供可靠且可比較的 ESG 資料,使投資者能夠做出更明智的投資決策,引導投資人重視環境與永續議題。現行的永續金融揭露規則係以「商品標籤」之方式揭露金融商品資訊,但共同意見中認為此標籤制度並未提供明確標準或門檻,使投資人無法充分了解為何特定商品具有永續性,導致漂綠(greenwashing)及相關投資風險。
因此,本次共同意見向執委會建議,執委會應建立投資人易於理解且具有客觀標準之金融商品類別,解決上述資訊落差疑慮。共同意見建議,金融機構可採用「永續(sustainable)」與「轉型(transition)」兩項金融商品類別。以下簡介共同意見就兩項金融商品類別提供之建議:
一、永續類別
永續類別係指金融商品投資於已達到環境或社會永續門檻之經濟活動或資產。共同意見提及,執委會或可考慮將永續類別再拆分為環境永續類別與社會永續類別;但若拆分兩項類別,可能必須注意目前環境永續與社會永續兩項類別得參考之指標發展程度不一,未來在訂定門檻時如何確認相關指標需進一步討論。
二、轉型類別
轉型類別係指金融商品投資於尚未達到環境或社會永續門檻,但未來將逐步提高其永續性以達到永續類別門檻之經濟活動或資產。共同意見建議,執委會於訂定轉型類別之門檻時,應參考經濟活動分類標準之關鍵績效指標、轉型計畫、商品減碳路徑及減緩主要不利影響之措施等因素。
目前執委會正評估利害關係人意見及永續金融揭露規則實施經驗,作為改善歐盟永續金融制度之依據,因此共同意見亦建議,執委會應先進行消費者調查,再著手後續規則修訂,方能達到制度優化之成果,保障投資人權益及永續發展。
中小企業創新核心計畫(Zentrales Innovationsprogramm Mittelstand ,以下簡稱ZIM)是一項覆蓋全國範圍、不限制技術領域和行業的補助計畫,補助對象除中小企業外,還包括與之合作的研究機構。該計畫整合過往其他許多補助計畫,德國聯邦經濟與能源部於2015年1月公佈了最新的ZIM計畫實施方針,擴大受補助中小企業的範圍,且提高資助資金的數額,將對企業補助的最高數額從35萬提高到38萬,對研究機構補助的最高數額從17.5萬提高到19萬歐元,以持續提升德國中小企業的創新能力與競爭力;企業與合作研究機構可以在補助的架構下針對先進技術研發獲得資金,研發主題不限,重點在於創新內容與市場價值。 ZIM計畫中的中小企業為員工人數不超過499人,同時年營業額低於5000萬歐元或資產負債表總額低於4300萬歐元的企業。在此基礎上,ZIM計畫中分為以下三種補助類型: 1.ZIM個人計畫(ZIM-Einzelproejkte):補助個別經營企業的研發計畫。 2.ZIM合作計畫(ZIM-Kooperationsprojekte):補助兩個或兩個以上的企業或研發機構之共同研發計畫。 3.ZIM網狀型合作計畫(ZIM-Kooperationsnetzwerke):補助在創新網狀架構下至少六個中小企業合作之全面性研發計畫。
智慧財產權侵權風險分擔機制-歐盟專利訴訟保險制度 美國商務部國家電信和資訊管理局呼籲透過第三方評測提高AI系統透明度2024年3月27日,美國商務部國家電信和資訊管理局(National Telecommunications and Information Administration, NTIA)發布「人工智慧問責政策報告」(AI Accountability Policy Report),該報告呼籲對人工智慧系統進行獨立評估(Independent Evaluations)或是第三方評測,期待藉此提高人工智慧系統的透明度。 人工智慧問責政策報告就如何對人工智慧系統進行第三方評測提出八項建議作法,分別如下: 1.人工智慧稽核指引:聯邦政府應為稽核人員制定適合的人工智慧稽核指引,該指引須包含評估標準與合適的稽核員證書。 2.改善資訊揭露:人工智慧系統雖然已經應用在許多領域,但其運作模式尚缺乏透明度。NTIA認為未來可以透過類似營養標籤(Nutrition Label)的方式,使人工智慧模型的架構、訓練資料、限制與偏差等重要資訊更加透明。 3.責任標準(Liability Standards):聯邦政府應盡快訂定相關責任歸屬標準,以解決現行制度下,人工智慧系統造成損害的法律責任問題。 4.增加第三方評測所需資源:聯邦政府應投入必要的資源,以滿足國家對人工智慧系統獨立評估的需求。相關必要資源如: (1)資助美國人工智慧安全研究所(U.S. Artificial Intelligence Safety Institute); (2)嚴格評估所需的運算資源與雲端基礎設施(Cloud Infrastructure); (3)提供獎金和研究資源,以鼓勵參與紅隊測試的個人或團隊; (4)培養第三方評測機構的專家人才。 5.開發及使用驗證工具:NTIA呼籲聯邦機關開發及使用可靠的評測工具,以評估人工智慧系統之使用情況,例如透明度工具(Transparency Tools)、認驗證工具(Verification and Validation Tools)等。 6.獨立評估:NTIA建議聯邦機關應針對高風險的人工智慧類別進行第三方評測與監管,特別是可能侵害權利或安全的模型,應在其發布或應用前進行評測。 7.提升聯邦機關風險管控能力:NTIA建議各機關應記錄人工智慧的不良事件、建立人工智慧系統稽核的登記冊,並根據需求提供評測、認證與文件紀錄。 8.契約:透過採購契約要求政府之供應商、承包商採用符合標準的人工智慧治理方式與實踐。 NTIA將持續與利害關係各方合作,以建立人工智慧風險的問責機制,並確保該問責報告之建議得以落實。
美國聯邦首席資料長委員會指出2021年工作重點之一在於促進跨機關的資料共享2021年1月6日,美國聯邦首席資料長委員會(Federal Chief Data Officers Council, 後稱CDO Council)向美國國會提交報告,報告中指出今年度的工作重點之一將放在促進聯邦政府跨機關的資料共享,以極大化政府資料的價值。 CDO Council是根據2018年的《實證決策基本法》(Foundations for Evidence-Based Policymaking Act of 2018)所設立,並於2020年1月正式召開第一次會議,該委員會的成員包含聯邦政府各部會的首席資料長(Chief Data Officers, CDO)。該委員會的任務是加強各部會利用資料作為戰略資產的能力,促進聯邦政府資料的管理、使用、保護、傳播和衍生,以達到聯邦資料戰略(Federal Data Strategy)所設定的目標。 美國農業部首席資料長兼CDO Council主席Ted Kaouk表示,以農業部所建置的農業資料共通平台(Ag DATA COMMONS)為例,農業部所屬機關間透過資料共享,已產生許多應用。 譬如:該部所屬的食品與營養局(Food and Nutrition Service, FNS)利用經濟研究局(Economic Research Service, ERS)統計的糧食不安全(Food Insecurity)資料,推動食物箱計畫(Farmers to Families Food Box Program);農業部所屬風險管理局(Risk Management Agency, RMA)使用平台上其他單位的資料,作為作物保險(crop insurance)的決策依據;農業部所屬食品安全和檢驗局(Food Safety and Inspection Service, FSIS)使用平台上其他單位的資料,來追蹤肉品加工廠的狀況。 CDO Council於去(2020)年10月成立了一個資料共享工作小組(Data Sharing Working Group),負責研究聯邦政府各機關間資料共享的使用案例,希望透過這樣的努力,強化聯邦政府的資料治理,產生高品質與即時性的資料,以此作為政府的決策依據。