澳洲政府2024年5月23日公布「國家電池戰略」(National Battery Strategy),這是澳洲政府推動「澳洲未來製造」(Future Made in Australia)政策計畫重要的一環。該戰略概述政府將如何擴大澳洲電池製造能力和發展專業技術,提升澳洲的經濟韌性和安全性。
戰略文件中,主要行動分為五項:
一、建立電池製造能力,增強經濟韌性,利用優勢促進國家經濟增長:
以2024年4月公布的《澳洲未來製造法》(Future Made in Australia Act)作為支持電池行業的法源。政府未來10年會提供227億澳元,投資包括再生氫、綠色金屬、低碳液體燃料、關鍵礦產精煉和清潔能源製造技術。
二、培養人才知識和技能,創造澳洲本土工作機會:
建立電池製造園區,結合企業和研究機構,將電池研究集中在有顯著需求和具市場潛力的領域。
三、確保澳洲在全球電池供應鏈中的地位:
重點支持構建供應鏈韌性的製造業,透過國際合作,應對氣候挑戰,支持電力轉型,創造清潔能源貿易機會,推廣高ESG標準。
四、在永續、標準和循環經濟方面引領世界
支持澳洲各地建立電池回收設施,補助電池回收技術的研究和測試,同時要求電池產業採取嚴格和有效的ESG措施。
五、促進各級政府合作
與各級政府合作,採取一致的標準和方法發展電池技術。透過聯合採購推動電池產業,並集中管理和輔導澳洲電池製造商。
澳洲擁有豐富的礦物資源,供應全球一半的鋰,但是其所製造的加工電池元件占全球不到1%;「國家電池戰略」的發布顯示澳洲政府希望利用自身優勢,在全球能源轉型中佔有一席之地的企圖心。
「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
日本企業陸續向開發中國家提供環保技術援助應中國鋼鐵工業協會(以寶山鋼鐵為首)之請,日本鋼鐵聯盟擬提供中國削減溫室氣體的環保技術。中國雖不在京都議定書約束的國家之列,急遽的經濟成長所造成的空氣污染已帶來嚴重的環境問題,日本鐵鋼聯盟於24日的委員會上正式決定技術援助的計劃,近期內將與中國討論相關細節。 日本鋼鐵業界自1990年度起,平均每年投注1200億日圓開發該產業的環保技術,目前業界「回收熔爐熱能轉供發電等能源節約技術」已經領先全球。日本鋼鐵業界2003年度換算成二氧化碳的溫室氣體排放量雖然已較1990年度減少6.4%,仍然未能達到京都議定書中要求減量10%的目標。 利用京都議定書的「彈性機制」,業界也可藉由跨國的技術援助,將國外減少的溫室氣體額度直接計入本國的額度之內。目前為止由日本政府核可的「彈性機制」計劃共15件,今年一月甫通過鹿島建設公司將馬來西亞廢棄物處理場的沼氣轉為電能的計劃,除此之外,東京電力公司和住友商事都分別在智利和印度有相關的環保計劃。
日本修正《氫能基本戰略》以實現氫能社會日本於2023年6月6日召開有關「再生能源、氫能等相關」內閣會議,時隔6年修正《氫能基本戰略》(水素基本戦略),其主要以「水電解裝置」、「燃料電池」等9種技術作為戰略領域,預計15年間透過官民投資15兆日元支援氫能相關企業,希冀盡速實現氫能社會。 日本早於2017年即提出氫能基本戰略,由於氫氣在使用過程中不會產生溫室氣體或其他污染物質,被認為是可以取代傳統化石燃料的潔淨能源,欲以官民共同合作,無論在日常生活、生產製造等活動下,都能透過氫能發電方式,達成氫能社會,故推出降低氫能成本、導入氫能用量的政策,並以2030年為目標,將氫能的用量設定為30萬噸、同時將氫能成本降為30日元/Nm3(以往價格為100日元/Nm3),使其成本與汽油和液化天然氣成本相當。為配合2021年《綠色成長戰略》,日本再次擴充目標,透過活用綠色創新基金,集中支援日本企業之水電解裝置和其他科技裝置,預計在2030年的氫能最大供給量達每年300萬噸、2050年可達2000萬噸。 然而隨著各國紛紛提出脫碳政策和投資計畫,再加上俄烏戰爭之影響,全球能源供需結構發生巨大變化,例如:德國成立氫氣專案(H2 Global Foundation)投入9億歐元,以市場拍賣及政府補貼成本的方式推動氫能、美國則以《降低通膨法》(The Inflation Reduction Act),針對氫能給予稅率上優惠措施等,在氫能領域進行大量投資,故為因應國際競爭,日本重新再審視國內氫能發展,並修正《氫能基本戰略》,除提出「氫能產業戰略」及「氫能安全保障戰略」外,本次主要修正之重要措施摘要如下: 1.維持2030年、2050年氫能最大供給量之設定,但新增2040年時提出氫能的最大供給量目標為1200萬噸。 2.由於水電解裝置在製造綠氫時不可缺,爰設定相關企業於2030年前導入15GW左右的水電解裝置,同時確立日本將以氫能製造為基礎之政策。 3.鑒於氫能科技尚不純熟、氫能價格前景不確定性高,在氫能供應鏈的建構上有較大風險,故透過保險制度分擔風險,以提高經營者、金融機構投資氫能之意願。 4.藉由氫能結合渦輪、運輸(汽車、船舶)、煉鐵化學等其他領域,期以氫氣發電渦輪、FC卡車(使用氫氣燃料電池Fuel Cell之卡車)、氫還原製鐵為中心,强化國際競爭力,創造氫能需求。 5.預計10年間,以產業規模需要在都市圈建設3處「大規模」氫能供給基礎設施;另依產業特性預計於具相當需求之地區,建設5處「中等規模」基礎設施。
歐盟執委會發布《受禁止人工智慧行為指引》歐盟執委會發布《受禁止人工智慧行為指引》 資訊工業策進會科技法律研究所 2025年02月24日 歐盟繼《人工智慧法》[1](Artificial Intelligence Act, 下稱AI Act)於2024年8月1日正式生效後,針對該法中訂於2025年2月2日始實施之第5條1,有關「不可接受風險」之內容中明文禁止的人工智慧行為類型,由歐盟執委會於2025年2月4日發布《受禁止人工智慧行為指引》[2]。 壹、事件摘要 歐盟AI Act於2024年8月1日正式生效,為歐盟人工智慧系統引入統一之人工智慧風險分級規範,主要分為四個等級[3]: 1. 不可接受風險(Unacceptable risk) 2. 高風險(High risk) 3. 有限風險,具有特定透明度義務(Limited risk) 4. 最低風險或無風險(Minimal to no risk) AI Act之風險分級系統推出後,各界對於法規中所說的不同風險等級的系統,究竟於實務上如何判斷?該等系統實際上具備何種特徵?許多內容仍屬概要而不確定,不利於政府、企業遵循,亦不利於各界對人工智慧技術進行監督。是以歐盟本次針對「不可接受風險」之人工智慧系統,推出相關指引,目的在明確化規範內涵規範,協助主管機關與市場參與者予以遵循。 貳、重點說明 一、AI Act本文第5條1(a)、(b)-有害操縱、欺騙與剝削行為 (一)概念說明 本禁止行為規定旨在防止透過人工智慧系統施行操縱與剝削,使他人淪為實現特定目的工具之行為,以保護社會上最為脆弱且易受有害操控與剝削影響的群體。 (二)禁止施行本行為之前提要件 1.該行為必須構成將特定人工智慧系統「投放於歐盟市場」(placing on the market)[4]、「啟用」(putting into service)[5]或「使用」(use)[6]。 2.應用目的:該人工智慧系統所採用的技術具有能實質扭曲個人或團體行為的「目的」或「效果」,此種扭曲明顯削弱個人或團體做出正確決定的能力,導致其做出的決定偏離正常情形。 3.技術特性:關於(a)有害的操縱與欺騙部分,係指使用潛意識(超出個人意識範圍)、或刻意操控或欺騙的技術;關於(b)有害地利用弱勢群體部分,是指利用個人年齡、身心障礙或社會經濟狀況上弱點。 4.後果:該扭曲行為已造成或合理可預見將造成該個人、另一人或某群體的重大傷害。 5.因果關係:該人工智慧系統所採用的技術、個人或團體行為的扭曲,以及由此行為造成或可合理預見將造成的重大傷害之間,具備相當因果關係。 二、AI Act本文第5條1(c)-社會評分行為 (一)概念說明 本禁止行為規定旨在防止透過人工智慧系統進行「社會評分」可能對特定個人或團體產生歧視和不公平的結果,以及引發與歐盟價值觀不相容的社會控制與監視行為。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該人工智慧系統必須用於對一定期間內,自然人及群體的社會行為,或其已知、預測的個人特徵或人格特質進行評價或分類。 3.後果:透過該人工智慧系統所產生的社會評分,必須可能導致個人或群體,在與評分用資料生成或蒐集時無關的環境遭受不利待遇,或遭受與其行為嚴重性不合比例的不利待遇。 三、AI Act本文第5條1(d)-個人犯罪風險評估與預測行為 (一)概念說明 本禁止行為規定之目的,旨在考量自然人應依其實際行為接受評判,而非由人工智慧系統僅基於對自然人的剖析、人格特質或個人特徵等,即逕予評估或預測個人犯罪風險。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該人工智慧系統必須生成旨在評估或預測自然人施行犯罪行為風險的風險評估結果。 3.後果:前述風險評估結果僅依據於對自然人的剖析,或對其人格特質與個人特徵的評估。 4.除外規定:若人工智慧系統係基於與犯罪活動直接相關的客觀、可驗證事實,針對個人涉入犯罪活動之程度進行評估,則不適用本項禁止規定。 四、AI Act本文第5條1(e)-無差別地擷取(Untargeted Scraping)臉部影像之行為 (一)概念說明 本禁止行為規定之目的,旨在考量以人工智慧系統從網路或監視器影像中無差別地擷取臉部影像,用以建立或擴充人臉辨識資料庫,將嚴重干涉個人的隱私權與資料保護權,並剝奪其維持匿名的權利。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該行為以建立或擴充人臉辨識資料庫為目的。 3.技術特性:填充人臉辨識資料庫的方式係以人工智慧工具進行「無差別的擷取行為」。 4.因果關係:建立或擴充人臉辨識資料庫之影像來源,須為網路或監視器畫面。 五、AI Act本文第5條1(f)-情緒辨識行為 (一)概念說明 本禁止行為規定之目的,旨在考量情緒辨識可廣泛應用於分析消費者行為,以更有效率的手段執行媒體推廣、個人化推薦、監測群體情緒或注意力,以及測謊等目的。然而情緒表達在不同文化、情境與個人反應皆可能存在差異,缺乏明確性、較不可靠且難以普遍適用,因此應用情緒辨識可能導致歧視性結果,並侵害相關個人或群體的權利,尤以關係較不對等的職場與教育訓練環境應加以注意。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該系統係用於推斷情緒。 3.因果關係:該行為發生於職場或教育訓練機構。 4.除外規定:為醫療或安全目的而採用的人工智慧系統不在禁止範圍內。例如在醫療領域中,情緒辨識可協助偵測憂鬱症、預防自殺等,具有正面效果。 六、AI Act本文第5條1(g)-為推測敏感特徵所進行之生物辨識分類行為 (一)概念說明 本禁止行為規定之目的,旨在考量利用人工智慧之生物辨識分類系統(Biometric Categorisation System)[7],可依據自然人的生物辨識資料用以推斷其性取向、政治傾向、信仰或種族等「敏感特徵」在內的各類資訊,並可能在當事人不知情的情況下依據此資訊對自然人進行分類,進而可能導致不公平或歧視性待遇。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該行為係針對個人進行分類;而其辨識目的係為推斷其種族、政治傾向、工會成員身分、宗教或哲學信仰、性生活或性取向等。 3.技術特性:該系統必須為利用人工智慧,並依據自然人的生物辨識資料,將其歸類至特定類別之生物辨識分類系統。 4.因果關係:前述分類依據為其生物辨識資訊。 5.除外規定:本項禁止規定未涵蓋對合法取得的生物辨識資料進行標記(Labelling)或過濾(Filtering)行為,如用於執法目的等。 七、AI Act本文第5條1(h)-使用即時遠端生物辨識(Remote Biometric Identification, RBI)系統[8]執法[9]之行為 (一)概念說明 本禁止行為規定之目的,旨在考量在公共場所使用即時RBI系統進行執法,可能對人民權利與自由造成嚴重影響,使其遭受監視或間接阻礙其行使集會自由及其他基本權利。此外,RBI系統的不準確性,將可能導致針對年齡、族群、種族、性別或身心障礙等方面的偏見與歧視。 (二)禁止施行本行為之前提要件 1.該行為必須涉及對即時RBI系統的「使用」行為。 2.應用目的:使用目的須為執法需要。 3.技術特性:該系統必須為利用人工智慧,在無需自然人主動參與的情況下,透過遠距離比對個人生物辨識資料與參考資料庫中的生物辨識資料,從而達成識別自然人身份目的之RBI系統。 4.因果關係:其使用情境須具備即時性,且使用地點須為公共場所。 參、事件評析 人工智慧技術之發展固然帶來多樣化的運用方向,惟其所衍生的倫理議題仍應於全面使用前予以審慎考量。觀諸歐盟AI Act與《受禁止人工智慧行為指引》所羅列之各類行為,亦可觀察出立法者對人工智慧之便利性遭公、私部門用於「欺詐與利用」及「辨識與預測」,對《歐盟基本權利憲章》[10]中平等、自由等權利造成嚴重影響的擔憂。 為在促進創新與保護基本權利及歐盟價值觀間取得平衡,歐盟本次爰參考人工智慧系統提供者、使用者、民間組織、學術界、公部門、商業協會等多方利害關係人之意見,推出《受禁止人工智慧行為指引》,針對各項禁止行為提出「概念說明」與「成立條件」,期望協助提升歐盟AI Act主管機關等公部門執行相關規範時之法律明確性,並確保具體適用時的一致性。於歐盟內部開發、部署及使用人工智慧系統的私部門企業與組織,則亦可作為實務參考,有助確保其自身在遵守AI Act所規定的各項義務前提下順利開展其業務。 [1]European Union, REGULATION (EU) 2024/1689 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL (2024), https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202401689 (last visited Feb. 24, 2025). [2]Commission publishes the Guidelines on prohibited artificial intelligence (AI) practices, as defined by the AI Act., European Commission, https://digital-strategy.ec.europa.eu/en/library/commission-publishes-guidelines-prohibited-artificial-intelligence-ai-practices-defined-ai-act (last visited Feb. 24, 2025). [3]AI Act, European Commission, https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai (last visited Feb. 24, 2025). [4]依據本指引第2.3點,所謂「投放於歐盟市場」(placing on the market),係指該人工智慧系統首次在歐盟市場「提供」;所謂「提供」,則係指在商業活動過程中,以收費或免費方式將該AI系統供應至歐盟市場供分發或使用。 [5]依據本指引第2.3點,所謂「啟用」(putting into service),係指人工智慧系統供應者為供應使用者首次使用或自行使用,而於歐盟內供應人工智慧系統。 [6]依據本指引第2.3點,「使用」(use)之範疇雖未在AI Act內容明確定義,惟應廣義理解為涵蓋人工智慧系統在「投放於歐盟市場」或「啟用」後,其生命週期內的任何使用或部署;另參考AI Act第5條的規範目的,所謂「使用」應包含任何受禁止的誤用行為。 [7]依據AI Act第3條(40)之定義,生物辨識分類系統係指一種依據自然人的生物辨識資料,將其歸類至特定類別之人工智慧系統。 [8]依據AI Act第3條(41)之定義,RBI系統係指一種在無需自然人主動參與的情況下,透過遠距離比對個人生物辨識資料與參考資料庫中的生物辨識資料,從而達成識別自然人身份目的之人工智慧系統。 [9]依據AI Act第3條(46)之定義,「執法(law enforcement)」一詞,係指由執法機關或其委任之代表,代替其執行目的包括預防、調查、偵測或起訴刑事犯罪,或執行刑事處罰,並涵蓋防範與應對公共安全威脅等範疇之行為。 [10]CHARTER OF FUNDAMENTAL RIGHTS OF THE EUROPEAN UNION, Official Journal of the European Union, https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:12012P/TXT (last visited Feb. 24, 2025).