美國國防部發布《國防部資訊技術發展戰略》,以促進IT變革並為未來奠定基礎

美國國防部(Department of Defense, DoD)於2024年6月25日發布「關鍵點:國防部資訊技術發展戰略」(Fulcrum:DoD Information Technology (IT) Advancement Strategy),將持續促進DoD之IT變革,並為未來奠定基礎。

本戰略描述作戰人員在推動IT方面應達成之目標與重要性,並列出提供聯合作戰IT能力、資訊網路與運算現代化、最佳化IT治理、栽培第一數位人力等四大目標(Line of Effort, LOE),簡述如下:

(1)提供聯合作戰IT能力(Provide Joint Warfighting IT Capabilities):在現今不斷變化且充滿競爭的全球環境中,該目標以使用者為中心,提供具功能性、可擴增、永續且安全之IT功能。並以改善作戰人員可用資訊為重點,以利在快節奏、多領域(multi-domain)作戰中獲得決策與競爭優勢。

(2)資訊網路與運算現代化(Modernize Information Networks and Compute):該目標著重於迅速滿足任務與商務需求,利用卓越技術與以資料為中心的零信任(Zero Trust)資通安全方法,提供安全且具更快資料傳輸速度、更低延遲與高度彈性的現代化網路。

(3)最佳化IT治理(Optimize IT Governance):該目標將提高傳送效率、節省成本,且透過從治理到資料獲取系統的簡化政策,以轉變治理制定更好的決策,包括使用強大資料功能。

(4)栽培頂尖的數位人才(Cultivate a Premier Digital Workforce):該目標將確保作戰人員為新興技術之布署做好準備,並持續致力於識別、招募、發展並留住最佳數位人才。其擴展DoD網路人力框架(DoD Cyber Workforce Framework, DCWF),著重於更廣義的數位人力,包括資料、人工智慧、軟體工程的工作角色。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 美國國防部發布《國防部資訊技術發展戰略》,以促進IT變革並為未來奠定基礎, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9249&no=645&tp=1 (最後瀏覽日:2026/02/17)
引註此篇文章
你可能還會想看
ENUM服務前景可期?

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

中國大陸國務院揭示支持科技成果轉化政策措施

  中國大陸國務院於2016/年2月18日國務院常務會議中確認支持科技成果移轉轉化政策措施及促進科技與經濟深度融合。   依據該會議決議,為提升創新主體的積極性,將鼓勵國家設立之研究開發機構、高等院校以轉讓、授權或作價投資等方式,向企業或其他組織轉移科技成果,並適用以下政策: (1) 自主決定轉移其持有的科技成果,原則上不需審批或備案。鼓勵優先向中小微企業轉移成果。支援設立專業化技術轉移機構。(惟在境外實施方面,仍須依《科學技術進步法》第21條及《中國大陸國家科技重大專項知識產權管理暫行規定》第33條進行審批。) (2) 成果轉移收入全部留歸單位,主要用於獎勵科技人員和開展科研、成果轉化等工作。科技成果轉移和交易價格要按程式公示。 (3) 通過轉讓或許可取得的淨收入及作價投資獲得的股份或出資比例,應提取不低於50%用於獎勵,對研發和成果轉化作出主要貢獻人員的獎勵份額不低於獎勵總額的50%。科技人員在成果轉化中開展技術開發與服務等活動,可依法依規獲得獎勵。在履行盡職義務前提下,免除事業單位領導在科技成果定價中因成果轉化後續價值變化產生的決策責任。 (4) 科技人員可以按照規定在完成本職工作的情況下到企業兼職從事科技成果轉化活動,或在3年內保留人事關係離崗創業,開展成果轉化。離崗創業期間,科技人員承擔的國家科技計畫和基金專案原則上不得中止。鼓勵企業採取股權獎勵、股票期權、專案收益分紅等方式,激勵科技人員實施成果轉化。 (5) 將科技成果轉化情況納入研發機構和高校績效考評,加快向全國推廣國家自主創新示範區試點稅收優惠政策,探索完善支援單位和個人科技成果轉化的財稅措施。更好發揮科技創新對穩增長、調結構、惠民生的支撐和促進作用。

行政院決議就登陸重大投資案增設政策性審查

  繼陳水扁總統於元旦宣示兩岸經貿改採「積極管理、有效開放」後,行政院於 3 月 22 日 的院會中通過兩岸經貿「積極管理、有效開放」配套機制方案,方案執行面向涵蓋經濟、農業、金融、人員及小三通等經貿往來層向,建立管理目標及機制。其中在經濟類部分,為強化對大陸投資之有效管理,企業赴大陸地區超過一定金額或涉及敏感科技的重大投資案,增設「政策面審查」, 但方案中並未進一步指出一定金額與敏感性產業的定義。   經經濟部邀集陸委會等相關單位,討論積極管理配套措施中的「重大投資案」界定標準,會中決定政府將參考國內廠商設立晶圓廠的投資規模,制定相關審查辦法,將 1 億美元以上或涉及敏感科技的投資案,進行「兩階段審查」,即政策面審查及投審會委員會議審查,並列舉需要經過政策面審查的產業。   所謂政策面審查,依據行政院大陸委員會發布的「兩岸經貿『積極管理、有效開放』配套機制」指出,是由政府邀請企業負責人及經理人,就企業財務計畫、技術移轉、輸出設備、在台相對投資等項目進行協調,在確定企業具體承諾,並由業者出具同意政府於必要時將進行大陸投資事項實地查核的承諾書後,再送投審會開會審查。經濟部表示,業者經核准進行大陸投資後,主管機關應分別針對母公司在國內持續投資與技術升級情況、廠商在大陸營運及增資、擴廠情形,持續追蹤管理,主管機關於必要時並將赴中國實地查核,以落實積極管理。   行政院表示,配套機制方案大部份是強調現行作業的「強化管理措施」,至於相關部會提出新增或應加強的執行事項,原則上應在今( 95 )年 6 月 30 日前完成,涉及修法及建置資料庫的部分,應在今年年底前執行或規劃完成。

TOP