金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。

報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。

在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。

若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。

報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

相關連結
你可能會想參加
※ 金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9286&no=67&tp=1 (最後瀏覽日:2025/12/04)
引註此篇文章
你可能還會想看
德國聯邦政府公布人工智慧戰略,制定AI發展及跨領域應用框架

  德國聯邦政府於2018年11月15日公布聯邦政府人工智慧戰略(Strategie Künstliche Intelligenz der Bundesregierung),除了針對人工智慧一詞定義外,並概述德國人工智慧戰略的3項基本原則,14項目標和12項行動領域。   第一項原則係透過該戰略,為德國在人工智慧(AI)的發展和應用制定整體政策框架,促進德國成為人工智慧最佳研究環境,以及人工智慧在產業與中小企業之應用,以確保德國未來競爭力。第二項原則係人工智慧在社會各領域有多種應用可能性,將可明顯促進社會進步和公民利益,因此重點將強調AI的應用對於人類和環境可帶來的益處,並加強社會各界對於人工智慧主題的密集交流及討論,確保AI朝負責且共同利益為出發點的開發及應用。第三項原則將透過廣泛的社會對話和積極的政策框架,將道德,法律,文化和制度結合人工智慧之應用融入整體社會。   該戰略列舉之工作項目同時包括評量標準,包含建置德法創意網(虛擬中心)、起草國家級且持續性的教育策略、加強相關創業投資力道、針對相關新創公司提供綜合性諮詢和推廣服務、針對自願提供且符合隱私規範之共享資料與建立資料分析基礎設備者研擬獎勵及促進框架、利用風險投資、創業融資和成長科技基金計畫擴展籌資機會、建立至少12個AI應用中心、將人工智慧列為研發機構跳躍式創新的焦點,未來5年加強產學研合作項目推廣、將環境與氣候的人工智慧應用列為發展亮點、共同決策人工智慧技術的導入與應用、透過中小企業4.0中心每年至少與1000家企業建立聯繫並進行AI訓練、將AI實驗室應用情境移轉至工作場所、進一步發展人工智慧平台學習系統、設計擘劃跨領域社會科學之「未來數位化工作與社會基金」、進一步制定相關數位化轉型專家策略、建立德國人工智慧觀測站、組織以人為中心的人工智慧工作環境之歐洲和跨大西洋對話、促進具自決權,社會與文化參與性及保護公民隱私之創新應用、聯邦政府於2025年前將投資約30億歐元於人工智慧發展、開發人工智慧生態系統、培養至少100名相關領域新教授、與資料保護監督機關及商業協會召開圓桌會議。

知己知彼,兩岸研發經費比一比

  依據本(2013)年9月26日中國大陸國家統計局、科學技術部、財政部聯合發布之統計公報顯示,去(2012)年全中國投入在研究與試驗發展(R&D)之經費支出達人民幣(以下同)10,298.4億元,較前(2011)年增加1,611.4億元,成長約18.5%。而大陸地區之研究與試驗發展經費約佔其國內生產總值(GDP)之1.98%,較2011年的1.84%提高0.14個百分點。惟同期(2012年,即民國101年)我國研發經費總計為新台幣4,312.96億元,佔臺灣地區GDP比率為3.07%,較中國大陸1.98%之比率略高。   另據大陸統計公報顯示,在中國大陸10,298.4億元之研發經費內,用於「基礎研究」之支出為498.8億元,比2011年增長21.1%;在「應用研究」之經費則為1,162億元,增長13%;至於「試驗發展」經費支出則為最大宗,達8,637.6億元,增長19.2%。總體來說,大陸地區之基礎研究、應用研究和試驗發展3項,佔其研發經費總支出之比率分別為4.8%、11.3%和83.9%;而臺灣地區則是以基礎研究、應用研究及技術發展等3類為區分,在2011年時分別為9.7%、23.7%及66.6%,說明臺灣地區在基礎與應用研究2部份佔研發經費總支出之比率較中國大陸為高。   然而相關研發經費投入至後續產出專利、運用,能否有效結合,或因而強化國家競爭力、減少需用單位間之落差,已是兩岸或其他國家所關切的焦點。因此,為利知己知彼,除了瞭解競爭國家之資源投入情形外,其研發成果相關運用情形等,亦實值得我們後續觀察、研究。

日本正式敲定今年版智慧財產權推動計畫

  日本為了提高產業競爭力,於 2002 年提出智財戰略計畫,並於內閣中設戰略本部,由首相小泉純一郎領導,每年並仔細擬定當年度的智慧財產權推動計畫。在今年剛定案的「二零零六年智慧財產權推動計畫」中,以開發或利用大學的智慧財產及加強與產業界的合作並提出對付仿冒品等的對策為重點。   根據「二零零六年智慧財產權推動計畫」,未來將加強整合大學內部的大學智慧財產本部與民間的技術移轉機關( TLO ),以便集中運用人才、研究成果。計畫也將建立一套可簡便利用專利或論文的資料庫系統,預期明年四月起可供利用。   日本的大學院校去年在國內取得專利權的有三百七十九件,大學將專利技術移轉至民間組織件數在二零零四年度有八百四十九件,藉由技術轉移所得收入為三十三億日圓,雖然這些表現相較於以往年度均有所成長,但日本不論在專利件數或收益上,都與美國相差甚遠,日本政府為了加強國際競爭力,認為有必要加強產、學界的合作,故「二零零六年智慧財產權推動計畫」也規劃,大學院校若有意到海外申請專利權,政府將補助申請費;此外,原本只限定優惠大學正副教授的專利申請費減免措施,也將及於研究所的學生等,以期促進大學內部研發。

歐盟網路和資訊系統安全局(ENISA)

  歐盟網路與資訊安全局(ENISA)成立於2004年,目的在於確保歐盟內部網路與資訊安全保持在最高水準,同時也為執行2016年8月生效之歐盟網路和資訊系統安全指令(NIS- Directive),提高歐洲的網路安全準備,以防止並抵禦網路安全事件措施。計有84名工作人員,共同運作位於希臘的兩個辦公室:Heraklion (2005年成立之總部)辦公室;與雅典辦公室(2013年成立),以提高該機構的運作效率。   ENISA在NIS指令的執行中扮演重要的角色,任務包括支援歐盟機構、會員國國與產業界,快速對網路威脅與資訊安全問題做出反應。它也被要求在執行任務中協助各國間成立的合作小組。此外,更透過指令要求ENISA協助成員國與執委會,提供他的專業意見和建議。   ENISA戰略有五個面向:     •提供關鍵網路設施和資訊安全問題之資訊和專業知識。     •制定和執行歐盟網路政策。     •建立歐盟間跨國支援能力。     •培育網路與資訊安全社群的網路演習、協調與支援。     •促進各國間的合作關係。   由於ENISA在建立之後網路發展情勢有顯著的演變,其任務和目標應該因應新發展做出調整,故歐盟執委會也在2017年1月開始重新審視其設立之法律依據以應對新情勢發展。

TOP