金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。

報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。

在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。

若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。

報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

相關連結
你可能會想參加
※ 金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9286&no=67&tp=1 (最後瀏覽日:2025/12/15)
引註此篇文章
你可能還會想看
歐盟質疑Google新訂網路隱私權政策服務條款

  2012年3月,Google 公告使用者的新網路隱私權政策條款,這項措施將Google 所提供的各項服務適用同一個隱私權政策,並整合多項服務於同一帳號之中,隨著隱私權政策的變動,使用者條款也一併更新,這項措施並同時透過電子郵件通知所有的使用者。然而,Google 此項新政策在歐洲地區實施時卻碰到困難,歐盟表示該隱私權條款適法性受到質疑,將可能受到有關單位的調查。   歐盟資料保護相關指令乃建構基礎架構規制網路使用者個人的隱私,相關機構與業者都必須遵守。關於此項Google 新隱私權政策條款,規定使用者的資料可以合併使用於各個不同的服務中,將可能造成使用者的個人資料將可能透過不同的服務而洩漏,並且遭受第三人使用,而有違反歐盟資料保護指令之虞。針對此問題,法國資料保護管理機構(The Commission Nationale de l'Informatique, CNIL)已對Google 提出詢問,詢問的內容包含Google是如何保存使用者的資料;如何將使用者於不同服務中揭露的資訊加以整合等問題。由於既存的使用者若要繼續使用Google相關服務,就必須同意該新訂隱私權政策條款,因此CNIL也透過此次機會了解使用者退出資料不被揭露的機制內容,以避免使用者在未經同意下個人隱私受到侵害。不過,屆至目前為止,包含英國在內的歐洲各國仍普遍認為,該隱私權政策條款並未充分賦予使用者掌握個人資料的權限。   相較於歐盟,美國聯邦交易委員會(Federal Trade Commission, FTC)對於使用者於使用網路時隱私權的保護,著重於業者隱私權保護的承諾;亦即歐盟著重於隱私權為個人基本權利,而美國普遍要求網路業者能於條款中,明確承諾保護使用者使用網路時的各項權利。無論如何,各國對於保護使用者使用網路服務的原則與概念雖然不同,但對於使用者資訊揭露的透明化要求均為一致。

以色列發布人工智慧監管與道德政策

以色列創新、科學及技術部(Ministry of Innovation, Science and Technology)於2023年12月17日公布以色列首個關於人工智慧的監管和道德政策,在各行各業將人工智慧作為未來發展方向的趨勢下,以多元、協作、原則、創新的理念為其導向,為了化解偏見、人類監督、可解釋性、透明度、安全、問責和隱私所帶來的衝擊,以色列整合政府部門、民間組織、學術界及私部門互相合作制定政策,以求解決人工智慧的七個挑戰,帶領以色列與國際接軌。 該人工智慧政策提出具體政策方向以制定措施,其中具有特色的三項為: 1. 軟性監管:人工智慧政策採取軟性監管制度,以OECD人工智慧原則(OECD AI Principles)為基礎,採行制定標準、監督與自律等方式促進人工智慧永續發展,注重以人為本的道德原則,強調創新、平等、可靠性、問責性。 2. 人工智慧政策協調中心(AI Policy Coordination Center):邀集專家學者成立跨部門的人工智慧政策協調中心,進行人工智慧政策研議,向政府部門監管提出建言,為人工智慧的開發使用建立風險管理,並代表國家參與國際論壇。 3. 公眾參與及國際合作:政府機關與監管機構舉辦人工智慧論壇,提出人工智慧的議題與挑戰,邀請相關人士參與討論,並積極參與國際標準制定,進行國際合作。 我國科技部在2019年邀集各領域專家學者研議提出「人工智慧科研發展指引」,強調以人為本、永續發展、多元包容為核心,以八大指引為標竿,推動人工智慧發展。我國已有跨部會溝通會議對於人工智慧法制政策進行研討,可觀察各國軟性監管措施作為我國人工智慧風險管理及產業政策參考,與國際脈動建立連結。

逐漸式微的「不可避免揭露原則(Inevitable Disclosure Doctrine)」

在2023年,多個美國法院判決拒絕採納「不可避免揭露原則(Inevitable Disclosure Doctrine)」,顯示出該原則將不再是原告於營業秘密訴訟中的一大利器,原告亦無法僅透過證明前員工持有營業秘密資訊且處於競爭狀態,便要求法院禁止該名前員工為其競爭對手工作。 在2023年2月,美國伊利諾伊州北區法院於PetroChoice v. Amherdt一案中指出,法院在適用「不可避免揭露原則」時會遏制競爭對手之間的員工流動,故將評估個案事實並嚴格限制其適用。在2023年6月,美國伊利諾伊州北區法院於Aon PLC v. Alliant Ins. Services一案中指出,根據2016年美國國會所通過的「保護營業秘密法案(Defend Trade Secrets Act, DTSA)」,該法案拒絕了「不可避免揭露原則」的適用,並禁止法院僅憑他人所知悉的資訊,阻礙其尋求新的工作,因此駁回了原告的損害賠償主張。在2023年9月,美國密蘇里州東區法院於MiTek Inc. v. McIntosh一案中同樣拒絕了「不可避免揭露原則」的適用,儘管該州的州法並未明確表達採納或拒絕該原則。 除此之外,美國聯邦法院在去年度的每一份報告意見中(Reported Opinion),皆未顯示出根據「不可避免揭露原則」申請禁令或取得救濟是合理的。換言之,大多數的美國法院都拒絕採納「不可避免揭露原則」或嚴格限制其適用。 綜上所述,儘管「不可避免揭露原則」能有效防止來自前員工不當使用其營業秘密的威脅,但其不再是未來營業秘密訴訟中的勝訴關鍵。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

「資訊儲存服務」提供者法律責任之研究-以日本實務新興發展為例

TOP