英國兩家電信業者Vodafone與Three UK(下合稱「合併方」)於2023年6月宣布將以合資的方式合併,英國競爭與市場管理局(Competition and Markets Authority, CMA)於2024年12月5日就本案提出最終審查報告,決議將有條件核准合併。
合併方於審查過程中承諾在8年內於全國各地建設各頻段基站,確保行動網路涵蓋範圍、容量和速度的顯著提升並迅速布建5G,目標在2030年讓全英國的學校與醫院都能使用獨立組網(不依賴4G網路)的5G服務(5G SA)。同時其與另一家電信業者VMO2的網路共享協議中,亦提出若合併案通過後,在未來10年將額外投資110億英鎊於網路建設,並將出售部份頻率資源予VMO2。
CMA 認為本案對市場競爭及消費者權益確實可能造成諸如資費上漲或服務條件降低等負面影響,但考量合併方如能履行其網路建設計畫提案及網路共享協議,長期而言能夠顯著提高英國的行動網路品質,能促進市場的有效競爭並最終使消費者受益,合併方亦承諾於三年內對消費者保留某些既有的資費方案,以及對行動虛擬網路業者(Mobile Virtual Network Operator, MVNO)履行預先約定的價格與服務條款,以消除短期內潛在的負面影響。
後續CMA將與合併方及利益相關方協商並召開公開諮詢以確定具法律效力之承諾細節,相關建設承諾亦將由英國通訊管理局(Office of Communications, Ofcom)納為合併方頻率執照之附帶條件,未來將由CMA與Ofcom共同監督承諾之履行,CMA可對未履行承諾之行為裁罰,而Ofcom最重則可撤銷頻率執照。
紐西蘭眾議院(New Zealand House of Representatives)於2023年3月通過數位身分服務信任框架法案(Digital Identity Services Trust Framework Act,以下稱本法案),旨在建立數位身分信任制度。本法案為數位身份服務商提供自願認證計畫,政府將授予符合信任框架規範之服務商認證。數位經濟與通訊部(Minister for the Digital Economy and Communications)指出,數位身份目前缺乏一致的辨識標準,而信任框架的訂定將有助於緩解身份盜用、詐欺與隱私資料外流之風險。茲所附言,本法案如經總督簽署將於2024年生效。 蓋紐西蘭針對政府數位化與數位轉型已擬定多項計畫、策略,其中包含建構安全、分散且以用戶為中心的數位身份管理制度,而本法案的通過與施行將為上述制度奠定基礎,其特性說明如下: 一、去中心化資料儲存:數位身分資料傳遞是由資訊提供者(如政府、銀行或公用事業公司等持有個人資訊者)、用戶(資料所有者)與服務商三方形成連結網絡,而非源自集中保存身分資料之數據資料庫。 二、以用戶為中心:若用戶有驗證或提供身分資訊之需求,經過政府認證符合信任框架規範的服務商,可在用戶的許可與請求下,傳送相關資料給用戶指定之第三方(需求者)。 三、非強制性機制:紐西蘭政府將不會強制服務商、用戶及需求者使用依本法案所建構之數位身分信任機制。 四、交互認證:基於紐西蘭與澳洲的單一經濟市場議程(Single Economic Market, SEM),本法案將符合對應英國、澳洲與加拿大有關數位信任之規範,減少因法規差異產生之成本和歧視。
美國FDA醫療器材與放射健康中心發布2024財政年度醫療器材指引美國食品藥物管理署(U.S. Food and drug administration, FDA)之醫療器材與放射健康中心(Center of Devices and Radiological Health, CDRH)於今(2023)年10月10日發布2024財政年度指引,其內容依據預算配置的優先順序,將2024年醫療器材與放射產品相關指引分為「A級」、「B級」及「回顧性審查」三份清單。而CDRH希望將訊息公佈後,針對這些指引的優先處理順序、修改或刪除徵求外部建議,以下節錄這三份清單內容: (1)A級清單:FDA擬於2024 財政年度優先發佈的醫療器材指引文件清單,內容包含醫材的再製造及短缺管理、預訂變更控制計畫、運用真實世界證據輔助監管之決策,及基於人工智慧/機器學習之醫材的軟體生命週期管理指引等。 (2)B級清單:FDA 在 2024 財政年度於資源許可的前提下,擬發佈的指引文件清單,內容包括醫材製造商的故障主動報告計畫、製造與品質系統軟體之確效管理,及診斷測試用之3D列印醫材管理指引。 (3)回顧性審查清單:為1994年、2004年和2014年發佈至今,目前仍適用的指引文件綜合清單,詢問是否有需與時俱進之處。 具體而言,CDRH希望徵求外界對現有清單優先順序配置合宜性的建議,同時也開放各界提出哪些醫材相關主題的指引文件草案可待補充。對於回顧性審查清單,如有修訂或刪除之必要,亦應檢具建議與具體理由。 從此三份清單及後續外界的意見,我們可藉此掌握美國在醫材短缺管理、預定變更控制、運用真實世界證據決策,及醫材軟體生命週期與確效管理等領域,政府資源配置與投入的規劃,同時也作為我國醫材政策之借鏡。
歐盟將擬訂關鍵促成技術(Key Enabling Technologies)促進總策略因為生物科技(Biotechnology)、奈米科技(Nanotechnology)、微(奈)米電子與半導體(Micro- and nanoelectronics, including semiconductor)、光電(Photonics)、及先進材料(Advanced materials)等五大科技,能夠被廣泛的應用在各種產業上,並可協助現有科技作出重大的改善,故在2009年9月歐盟委員會(European Commission)所公布的一份溝通文件(Communication)當中,被認定為是可以加強競爭力,並協助經濟永續發展的關鍵促成技術(Key Enabling Technologies, KETs)。 在該份名為「為我們的未來做準備:發展歐洲關鍵促成技術促進總策略」(Preparing for our future: developing a common strategy for key enabling technologies in the EU)的文件中,歐盟委員會指出,KETs的技術外溢效益和其所能產生的加成效果,可以同時提昇其他領域的表現,如通訊技術、鋼鐵、醫療器材、汽車、及航太等領域,故將對歐盟地區未來的經濟永續發展有著重大的影響,也可以協助面對社會與環境的重大挑戰。 該文件指出,雖然歐盟擁有許多KETs的相關研發成果,對促進研發成果產業化之措施卻有所不足。在此溝通文件中所規劃的發展策略,配合歐盟持續的在研發作出更多的投資,將會協助歐盟充分應用這些可提高歐盟未來競爭力的KETs。 因為KETs的推展須注意系統性的相關聯性,所以數個不同的政策必需被同時考慮。在溝通文件中提出了十項應被考慮的面向,包括(1)將研發政策專注於KETs;(2)促進境內產學研單位間以及產業供應鏈間的技術移轉;(3)促進歐盟與會員國間發展共同的策略方案和操作專案;(4)運用各會員國境內之補助政策;(5)結合KETs的應用與氣候變遷政策;(6)創造市場需求並配合公共採購;(7)與國際間高科技政策相比較並加強國際合作;(8)透過雙邊或多邊貿易談判創造KETs有利的貿易條件;(9)促進歐洲投資銀行(European Investment Bank, EIB)給予高科技產業優惠貸款;以及(10)透過高等教育與在職訓練提昇技術水準。 歐盟委員會將會建立一個獨立的高階專家團體,去繪製歐盟有關各KETs的長期策略藍圖,並將於2010年年底向部長會議(Council of Ministers)報告。
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。