美國HHS發布2024-2030年聯邦健康IT計畫推動共享醫療體系

美國衛生及公共服務部(United States Department of Health and human Services, HHS)於2024年9月底發布「聯邦健康IT策略計畫」(Federal Health IT Strategic Plan),強化電子健康資訊存取、交換和使用,提升健康管理能力、改善醫療照護體驗、推動健康研究及創新,並提出四大目標

四大目標包括:

1. 提倡健康福祉:賦予個人管理自身健康的權利,確保個人和公眾獲得現代且公平的醫療服務,並促進社區健康與安全。

2. 強化醫療照護的提供和體驗:提供安全、公平且優質的醫療服務,擴大病人獲取優質醫療途徑並減少健康差異。加強競爭和透明度改善醫療體系,減輕醫療提供者的監管和管理負擔,並增強使用健康IT工具的信心。

3. 加速研究創新:允許健康IT使用者適當存取健康資料以推動個人和公眾健康的改善。加強個人和公眾層面研究與分析,透過使用代表性不足群體的健康資料,促進健康公平。

4. 醫療資料連結醫療系統:持續推動健康IT工具的開發和應用、資料共享、普及健康IT基礎設施、保護個人隱私和安全、整合的公共衛生資料和基礎設施。

在健康IT策略計畫中也聚焦在健康公平性、人工智慧應用、資料共享及安全性等議題,並提出了六大實施原則:以人為本的包容性設計、安全且優質的健康資訊、資料導向的決策、提升全民健康公平性、鼓勵創新和競爭。透過聯邦政府健康IT策略目標與原則,預期在6年內提供更有效、公平和現在化的醫療系統。

相關連結
※ 美國HHS發布2024-2030年聯邦健康IT計畫推動共享醫療體系, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9313&no=64&tp=1 (最後瀏覽日:2026/02/02)
引註此篇文章
你可能還會想看
紐約通過法案,將禁止企業使用未能通過偏見審計的自動化招募系統

  紐約市議會於2021年11月10日通過紐約市行政法規的修正法案,未來將禁止雇主使用未通過偏見審計(bias audit)的「自動化聘僱決策工具(Automated Employment Decision Tools)」,避免因為自動化工具導致的偏見與歧視,不當反映於雇主的最終聘僱決策。   於該法所定義之「自動化聘僱決策工具」,係指透過機器學習、統計模型、數據分析或人工智慧之運算,以實質性協助或取代決策過程,影響最終聘僱決定。而聘僱決定包含篩選應徵者以及對員工作成是否晉升之結果。偏見審計由獨立審計員針對自動化聘僱決策工具進行測試,藉以評估該自動化聘僱決策工具對於雇主依法應申報資訊的影響,例如是否影響及如何影響員工性別、族裔、職位、職務等特徵分布情形。該法並規定雇主或職業介紹機構只有在滿足以下條件的前提下,始得使用自動化聘僱決策工具,包括: 一、通過審計義務:自動化聘僱決策工具須於1年之內通過偏見審計(bias audit)。在使用該工具前,應將該最新審計結果摘要及該工具發行日公告於雇主或職業介紹機構的網站上。除非另有規定,如未有公告,應徵者或員工得提出書面要求雇主於30日內提供自動化聘僱決策工具所收集的數據類型、來源及雇主或職業介紹機構之數據保留政策之相關資訊。 二、通知義務:如欲使用自動化聘僱決策工具對居住在紐約市的員工或應徵者進行評估時,雇主應於使用前的10個工作日內通知該員工或應徵者,且應通知用於評估時所使用之工作資格或特質等參數,並允許應徵者或員工申請以替代方式進行評估。   如雇主或職業介紹機構違反上開規定,第一次違反者將承擔500美元的民事懲罰(civil penalty),如連續違反者,對於之後的違反將承擔500至1500美元不等。目前該法案仍待市長簽署,該法案如經市長簽署通過,將於2023年1月1日生效。

初探與省思我國法制下之侵權行為適用於非依軌道行駛之自動駕駛車輛之過失內涵

初探與省思我國法制下之侵權行為適用於非依軌道行駛之自動駕駛車輛之過失內涵 資訊工業策進會科技法律研究所 2019年03月15日 壹、事件摘要   於2018年03月18日晚間10時許,美國亞利桑那州(Arizona,下稱Arizona)一名49歲的婦人,遭到配備Uber自動駕駛系統之車輛[1],在運行自動領航模式(Autopilot)下撞擊,雖然該婦人立即送往醫院,但仍回天乏術而在醫院中去世。就在前開事故發生後,Arizona州長Doug Ducey因此下令其暫停測試。[2]   此外,同年12月11日晚間10時許,在我國有一輛配備自動輔助駕駛功能的Tesla,疑似駕駛人精神不濟因而未能及時注意車前狀況,導致車禍發生,雖然肇責是否牽涉Tesla之自動輔助駕駛功能或駕駛人本身有無疲勞駕駛等情事,有待進一步釐清。[3]   綜上,不論測試或道路駕駛,現今社會已不乏具有一定自動駕駛等級之車輛於路上行駛,然而在推廣、研發或應用自動駕駛車輛(下稱自駕車)的同時,若不幸發生類似前開新聞之(車禍)事故時,相關肇事責任究應如何釐清,隨著我國已於2018年12月19日公布無人載具科技創新實驗條例以積極推動自駕車相關應用,更愈顯重要,為解決前開肇事相關疑慮,本文擬針對民事上之「過失」本質,反思自駕車相關應用可能延伸的事故責任,是否因應科技發展而有不同的過失內涵。 貳、重點說明   承上,面對自駕車相關科技與應用的世界洪流,若發生車禍等交通事故時,當事人相關之損害賠償請求,仍大多以民法上之侵權行為作為基礎,雖事故肇因種類眾多,亦常見各類的肇因共同造成事故發生,但本文考量相關議題繁複,以下僅就非依軌道行駛之自駕車、駕駛人過失內涵等框架下依序進行初探與反思: 一、我國侵權行為損害賠償係以行為人有無具抽象輕過失為斷   車禍之發生,若涉及駕駛人之行為者,受有不論財產或人身損害之人而欲請求賠償者,無論係依據民法第184條以下何條侵權行為之規定(即民法第184條第1項前段、同條項後段或第191條之2等規定),請求駕駛自駕車之人賠償,前提均為駕駛人具有過失,差別僅在舉證責任是否由請求權人(受有損害之人)負擔。   承上,既然前開侵權行為之重要成立要件為過失,其具體內容為則為駕駛人之注意義務應至何種程度,然在我國民事過失責任之架構上,有不同程度上之區分,即分別為抽象輕過失、具體輕過失及重大過失三種。申言之,抽象輕過失為欠缺應盡善良管理人之注意者義務;具體輕過失者為欠缺應與處理自己事務為同一注意者;重大過失者為顯然欠缺普通人之注意者[4]。   對此,實務見解[5]以及學者[6]歷來均認侵權行為之過失標準,應以行為人是否克盡客觀化之過失標準─抽象輕過失,倘否,則應負擔過失之賠償責任,是以,就此脈絡推論,自駕車之駕駛人若有違善良管理人注意義務致車禍發生且使他人受損害,即應負損害賠償責任。 二、駕駛人注意義務與自駕車自動駕駛程度間之互動   根據引領世界自駕車標準的領銜者─國際汽車工程師學會(Society of Automotive Engineers International,下稱SAE)所分類之自動化駕駛等級,區分為等級0至等級5(共6個等級),而等級3後之自駕車即開始逐漸將環境監控的任務從駕駛人移轉至車輛本身,而駕駛人僅在特殊條件下,方須接管駕駛車輛,更甚在等級5時是由自駕車在任何狀況下均可自行駕駛,不過在等級2前之等級,環境監控之任務大多在駕駛人身上,自駕車至多僅係協助運行駕駛人之指令[7]。   然而,自駕車駕駛人因車禍所生之侵權行為責任,誠如前述,係以駕駛人存有抽象輕過失作為前提,而過失之本質,則係雖非故意,但按其情節,(1)行為人(駕駛自駕車之人)應或能注意,卻不注意,或(2)雖可預見侵權行為(車禍肇事)之事實發生,但確信不發生[8],就此,在SAE分類等級2以前之自駕車,因監控環境之任務仍由駕駛人負擔,則該類等級自駕車之駕駛人應與一般車輛之駕駛人,負擔相同侵權行為之注意義務內容(或程度),但等級3至等級5自駕車之各式應用情境,車輛行駛環境之相關監控資訊已轉由車輛本身處理、控管,則駕駛人是否對於自駕車之車禍發生,仍具有可預見性,或得注意並防免之,則不無疑慮。 參、事件評析   綜上,本文所提不同等級自駕車,是否當然得以繼續適用傳統民事侵權行為之過失標準判斷駕駛人有無過失,實有相當程度上之衝突,蓋若自駕車之駕駛人對於行車環境資訊已不如駕駛一般車輛時,實難期待駕駛人對於車禍之發生有何預見可能,或在遇見後積極防免結果發生,倘若一概遵循傳統對車禍侵權行為之高注意義務要求─抽象輕過失責任,或將產生使不明瞭或難以預見該事故原因發生之人,卻必須就非因己誤之結果負責,某程度上似有違過失責任之本質,而質變成為無過失之擔保責任。   據此,本文認為,若要解決前開損害發生須有補償或賠償之問題,或可(1)透過保險、基金等方式填補損害,或(2)具體化等級3至等級5自駕車之駕駛人應負何等注意義務,如駕駛人須隨時處於得以接管車輛操作之狀態,使等級3以上之自駕車所應盡之注意義務與傳統侵權行為之注意義務脫鉤處理(3)與商品責任間進行相關的調和等,然而無論如何,對於此等問題或疑慮,究竟應採何方向或多方進行,甚或以其他方式解決,則有待後續更進一步的討論與分析。 [1] Uber於該州進行自動駕駛車輛之測試。 [2] ADOT director's letter to Uber halting autonomous vehicle tests, ADOT, https://www.azdot.gov/media/News/news-release/2018/03/27/adot-director's-letter-to-uber-halting-autonomous-vehicle-tests (last visited Mar. 21, 2019); Ryan Randazzo, Arizona Gov. Doug Ducey suspends testing of Uber selfdriving cars, azcentral, Mar. 26, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/26/doug-ducey-uber-self-driving-cars-program-suspended-arizona/460915002/ (last visited Mar. 21, 2019); Ryan Randazzo, Bree Burkitt & Uriel J. Garcia, Self-driving Uber vehicle strikes, kills 49-year-old woman in Tempe, azcentral, Mar. 19, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/19/woman-dies-fatal-hit-strikes-self-driving-uber-crossing-road-tempe/438256002/ (last visited Mar. 21, 2019). [3] 蘋果日報,〈台灣首例!特斯拉自動駕駛闖禍 國道上撞毀警車〉,2018/12/12,https://tw.appledaily.com/new/realtime/20181212/1482416/ (最後瀏覽日:2019/03/21)。 [4] 96年台上字第1649號判決。 [5] 19年上字第2476號判例。 [6] 王澤鑑,《侵權行為法》,自版,頁308-309(2011)。 [7] SAE International Releases Updated Visual Chart for Its “Levels of Driving Automation” Standard for Self-Driving Vehicles, SAE International, https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles (last visited Mar. 22, 2019). [8] 97年度台上字第864號判決。

Google否認其核心網絡搜索技術涉及侵權

  針對Google 於去年11月被美國東北大學(Northeastern University)向德州東區聯邦法院馬歇爾分院 (the US District Court for the Eastern District of Texas in Marshall) 所提出之專利侵權訴訟案,指控Google的核心網絡搜索系統所使用的搜索技術涉嫌侵害東北大學所擁有的專利, Google 於日前指稱該訴訟無任何法律依據, 指出其搜索核心技術是由Google自行研發並主張東北大學的專利為無效之專利且即使東北大學的專利為有效,因原告於發現其所稱被告可能侵權之事實後,從未告知Google並已拖延太久時間(約兩年半)才提出訴訟,原告已喪失請求賠償的權利。Google請求法院駁回原告之訴,並宣告原告的專利為無效。如上述請求不被法院接受,Google 則請求陪審團審判 (由此可看出Google 不怕輸的決心)。   此案的原告為美國東北大學和Jarg公司。Kenneth Baclawski (前東北大學教授及Jarg公司創始人) 於1997年取得了編號為5,694,593之搜索技術相關的專利, 比Google公司的成立早了一年。原告訴請法院除去被告之侵害、並請求損害賠償及支付訴訟費用等。 對於Google的回應,Michael Belanger, Jarg公司的另一名創始人兼總裁Michael Belanger表示,由於全案已進入訴訟程序,不便加以評論。

監視器無鉛製程 冠捷導入

  歐盟RoHS、WEEE政策實施在即,出身歐洲第一大品牌的飛利浦(Philips)率先響應,今年所有LCD監視器符合RoHS全面無鉛化,代工夥伴冠捷(AOC)隨第二季正式合併飛利浦顯示器事業部,也將導入無鉛製程。國內兩大LCD監視器製造大廠明基、光寶也已防患未然,製程無鉛化製程提早開跑。    飛利浦今年在台灣LCD監視器策略,其中之一是全面推展無鉛化產品線,W、P、B、S四大系列全面符合歐盟RoHS規定,鉛含量在○‧一%(1000ppm)以下,可說領先各品牌率先推出無鉛產品。    監視器製造大廠冠捷(AOC)已和飛利浦已簽訂顯示器事業部併購意向書,第二季起將正式啟動合併機制,而飛利浦在台灣僅留下採購、行政、台灣行銷業務部門。因此這套無鉛製程,也將如期導入至AOC的產線之中。至於國內製造大廠光寶、明基也已如期順利切換到無鉛製程。光寶目前綠色採購達成率已約七成,今年底則將達九成,因應製程無鉛化需要,還添購五部X光檢測設備,以期達到滴水不漏效果;至於明基明年起工廠端也不再生產舊款機種,一律符合無鉛化作業。    儘管無鉛製程難度相當高,不過對LCD監視器而言,挑戰最高卻是無汞化,因為冷陰極管(CCFL)內必含汞,所以歐盟規定裡則將CCFL燈管、投影機燈泡列為例外條款,不過隨著環保意識抬頭,LCD監視器業者已有以LED背光模組取代冷陰極管(CCFL)計畫。

TOP