美國聯邦法官裁決AI「訓練」行為可主張合理使用

美國聯邦法官裁決AI「訓練」行為可主張合理使用

資訊工業策進會科技法律研究所

2025年07月07日

確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。

AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。

壹、事件摘要

2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]

此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。

貳、重點說明

依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為:

一、使用的目的與性質—形成能力具高度轉化性

AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]

另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]

二、受保護作品的性質--高度創作性非關鍵因素

法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]

三、使用的數量與實質性--巨大數量係轉化所必要

法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]

四、對潛在市場或價值的影響

本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]

不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]

參、事件評析

一、可能影響我國未來司法判決與行政函釋

我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。

二、搜取網路供AI訓練資料的合理使用看法仍有疑慮

依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。

三、有效率的資料授權利用機制仍是關鍵

前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。

本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。

本文同步刊登於TIPS網站(https://www.tips.org.tw

[1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece.,  (最後閱覽日:2025/06/25)

[2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25)

[3]Id. at 12-14.

[4]Id. at 14-18.

[5]Id. at 30-31.

[6]Id. at 25-26.

[7]Id. at 28.

[8]Id. at 18-19.

[9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352

你可能會想參加
※ 美國聯邦法官裁決AI「訓練」行為可主張合理使用, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9357&no=0&tp=1 (最後瀏覽日:2025/09/16)
引註此篇文章
你可能還會想看
聯合國委員會通過聲明 禁止各種形式複製人研究

  面對科學界越來越無法抵擋的複製人浪潮,聯合國二月十八日召開一項特別會議,並表決通過聲明,呼籲各國政府禁止各種形式的複製人研究,包括用於研究人類幹細胞的技術等。不過項聲明並不具強制力。   聯合國法律委員會是以七十一票贊成,三十五票反對,四十三票棄權下,通過這項由宏都拉斯和美國布希政府提出的支持禁止複製人的聲明,委員會通過後交給聯合國大會,由一百九十一個會員國成員最後決定。回教國家已經表明,聯合國大會表決時將棄權,因為聯合國內部並無法達成共識﹔而目前各自有人類幹細胞研究的英國,比利時和新加坡都反對這項聲明,並稱聲明內容不會影響他們的「醫療性幹細胞研究」。   會中支持和反對陣營的最主要爭議核心,在於醫療性複製人類的研究,這類研究必須複製人類胚胎取得幹細胞,實驗結束後銷毀。支持這項研究技術的科學家認為,人類幹細胞研究為許多至今仍無法治療的疾病帶來新希望,例如阿茲海默症,各種癌症,糖尿病和脊椎傷害患者,影響約一億人﹔但是如美國,加拿大等反對國家則認為,這種研究不論是哪一種目的,都是在剝奪利用一個人的生命。聯合國成員在二○○一年起討論制定一項具約束力的全球性公約,禁止複製人,不過各國歧見擴大,一直無法達成共識。義大利因此提議制定不具強制力的宣言,呼籲各國各自立法「禁止任何透過複製程序產生人類生命的企圖,以及任何意圖達成此一目的的研究。」不過,宏都拉斯將此建議擴大,提議聯合國聲明「禁止所有形式的複製人行為。」

人權組織向法國最高行政法院提交申訴,要求政府停止使用歧視性演算法

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 國際特赦組織(Amnesty International)與法國數位隱私權倡議團體La Quadrature du Net(LQDN)等組織於2024年10月15日向法國最高行政法院提交申訴,要求停止法國國家家庭津貼基金機構(Caisse nationale des allocations familiales,CNAF)所使用的歧視性風險評分演算法系統。 CNAF自2010年起即慣於使用此系統識別可能進行福利金詐欺的對象,該系統演算法對獲取家庭與住房補助的對象進行0至1之間的風險評分,分數越接近1即越可能被列入清單並受調查,政府當局並宣稱此系統將有助於提升辨識詐欺與錯誤的效率。 LQDN取得該系統的原始碼,並揭露其帶有歧視性質。該等組織說明,CNAF所使用的評分演算法自始即對社會邊緣群體如身心障礙者、單親家長,與低收入、失業、居住於弱勢地區等貧困者表現出懷疑態度,且可能蒐集與系統原先目的不相稱的資訊量,這樣的方向直接違背了人權標準,侵犯平等、非歧視與隱私等權利。 依據歐盟《人工智慧法》(Artificial Intelligence Act,下稱AIA),有兩部分規定: 1. 用於公機關評估自然人是否有資格獲得基本社會福利或服務,以及是否授予、減少、撤銷或收回此類服務的人工智慧系統;以及用於評估自然人信用或建立信用評分的人工智慧系統,應被視為高風險系統。 2. 由公機關或私人對自然人進行社會評分之人工智慧系統可能導致歧視性結果並排除特定群體,從此類人工智慧總結的社會分數可能導致自然人或其群體遭受不當連結或程度不相稱的不利待遇。因此應禁止涉及此類不可接受的評分方式,並可能導致不當結果的人工智慧系統。 然而,AIA並未針對「社會評分系統」明確定義其內涵、組成,因此人權組織同時呼籲,歐盟立法者應針對相關禁令提供具體解釋,惟無論CNAF所使用的系統為何種類型,因其所具有的歧視性,公機關皆應立即停止使用並審視其具有偏見的實務做法。

莫德納提告輝瑞COVID-19疫苗侵害其專利,判決結果或可能影響專利承諾發展

  莫德納公司(Moderna)於2022年8月26日對輝瑞(Pfizer)/BNT公司提出專利侵權訴訟,主張輝瑞之Comirnaty疫苗侵害其RNA平台技術,引發各界關注,因此舉不僅為兩大COVID-19疫苗藥廠之間之專利戰爭,同時可能引發莫德納違反其專利承諾(Patent Pledge)之疑慮,從而衍生專利承諾效力問題之爭議。   莫德納曾於2020年10月8日於該公司官網上自願承諾:「於大流行繼續的同時,莫德納不會針對那些旨在製造對抗大流行疫苗的公司,主張我們與COVID-19相關之專利」(第一次專利承諾),而後於2022年3月7日,莫德納更改其承諾(第二次專利承諾),永遠不會針對在Gavi COVAX預先市場承諾(Advance Market Commitment, AMC)中之92個中低收入國家、或為這些國家生產疫苗之公司主張莫德納之COVID-19疫苗專利,且前提是生產之疫苗僅用於AMC之92個國家。莫德納對於輝瑞侵權訴訟之聲明亦與更新後之承諾一致,其僅請求2022年3月8日後輝瑞COVID-19疫苗侵害莫德納專利之損害賠償,而未請求2022年3月7日前之損害賠償責任。   惟莫德納單方面更改其專利承諾並提起訴訟之行為仍引發眾多爭議,主要包括莫德納第一次專利承諾是否有法律上之拘束力、後續更改其專利承諾之行為是否有效、這些行為之影響為何等問題。就第一次專利承諾而言,目前有認為其具有法律上之拘束力,其可能可被視為一種「公共授權」(public license)行為,為專利權之書面授權且適用於任何希望接受授權者;退步言之,即使該授權未成立,莫德納基於「承諾禁反言」(promissory estoppel)之法理,亦不能隨意撤回該承諾或追溯撤銷其已授予之權利;且由於第一次承諾中所述之「大流行繼續(while the pandemic continues)」之條件在世界衛生組織未宣告疫情結束之前仍然存續,該承諾應仍繼續有效。惟亦有認為莫德納應得以第二次專利承諾可取代第一次專利承諾,而自2022年3月起主張其專利權者。   本案針對專利承諾之效力引發許多討論,未來於此訴訟案件中法院如何評價莫德納之專利承諾以及對於其效力之認定,亦可能影響現有之專利承諾生態:若企業可任意收回、更改其承諾,並於後續得以訴訟手段提告運用其專利之第三人,或有可能影響公眾對於專利承諾信任或利用意願;而若專利承諾不能任意修改,企業須受自身之承諾嚴格拘束,則未來或許即使社會遭遇危機,企業亦不敢貿然發布專利承諾應對危難。因此,此案後續發展將對整體專利承諾與授權影響重大,值得持續進行關注及了解。

新加坡智慧財產局研究顯示,智慧財產對於企業經營獲利的重要性

新加坡智慧財產局(Intellectual Property Office of Singapore, IPOS)2023年5月發布了一份名為《品牌、專利與企業績效表現的研究報告》(Brands, patents and company performance study),分別針對全球前100大上市公司及新加坡前100大上市公司進行分析,說明智慧財產等無形資產對於企業發展的重要性。 首先,IPOS在報告中對全球前100大上市公司進行分析,若該上市公司同時名列「全球500大最有價值品牌」(英國知名品牌諮詢機構Brand Finance每年發布)及/或「全球專利前250強」(美國知名專利研究公司IFI CLAIMS Patent Services每年發布),報告中將這類上市公司定義為持有最有價值品牌或最強專利組合的企業。這類企業與全球前100大上市公司中的其他企業相比,平均收入(revenue)是其他企業的2.2倍、淨利(net profit)是其他企業的1.9倍、市值(market capitalisation)是其他企業的2.3倍。 其次,本報告以新加坡前100大上市公司為分析對象,其中持有最有價值品牌(同時名列「新加坡100大最有價值品牌」)及/或最強專利組合(根據PatSnap專利資料庫的檢索資料定義)的上市公司,與新加坡前100大上市公司中的其他企業相比,平均收入是其他企業的2.4倍、淨利是其他企業的1.8倍、市值是其他企業的2.7倍。 由新加坡發布的報告可知,品牌或專利等無形資產對於企業維持競爭優勢的重要性,企業應將智慧財產布局與管理列為公司治理的重點,持續確保企業無形資產的價值(譬如企業若未持續落實商標布局與管理,將會削弱品牌價值),以強化企業的競爭力。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP