美國聯邦法官裁決AI「訓練」行為可主張合理使用

美國聯邦法官裁決AI「訓練」行為可主張合理使用

資訊工業策進會科技法律研究所

2025年07月07日

確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。

AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。

壹、事件摘要

2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]

此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。

貳、重點說明

依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為:

一、使用的目的與性質—形成能力具高度轉化性

AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]

另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]

二、受保護作品的性質--高度創作性非關鍵因素

法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]

三、使用的數量與實質性--巨大數量係轉化所必要

法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]

四、對潛在市場或價值的影響

本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]

不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]

參、事件評析

一、可能影響我國未來司法判決與行政函釋

我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。

二、搜取網路供AI訓練資料的合理使用看法仍有疑慮

依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。

三、有效率的資料授權利用機制仍是關鍵

前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。

本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。

本文同步刊登於TIPS網站(https://www.tips.org.tw

[1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece.,  (最後閱覽日:2025/06/25)

[2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25)

[3]Id. at 12-14.

[4]Id. at 14-18.

[5]Id. at 30-31.

[6]Id. at 25-26.

[7]Id. at 28.

[8]Id. at 18-19.

[9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352

你可能會想參加
※ 美國聯邦法官裁決AI「訓練」行為可主張合理使用, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9357&no=64&tp=1 (最後瀏覽日:2025/10/15)
引註此篇文章
你可能還會想看
英國商業、能源及產業策略部發布智慧饋電保證公眾諮詢

  英國商業、能源和產業策略部(Business, Energy and Industrial Strategy,以下簡稱BEIS)於2019年1月提出智慧饋電保證(Smart Export Guarantee,以下簡稱SEG),於此保證下,BEIS將擬定一套不同於躉購制度之政策框架,使小型生產消費者(prosumer)所生產之綠色電力,可於此一政策框架之保障下,與售電業者議約,並將電力售予售電業者,以減輕英國政府預計於今年3月廢除躉購制度所帶來之衝擊。   SEG重要之內容包含: (1) SEG課予大型售電業(用戶數大於25萬之售電業)收購小型生產消費者所生產之綠色電力之義務。 (2) 小型生產消費者所生產之綠色電力之交易價格及相關契約內容,將交由售電業者與小型生產消費者自行協議。但SEG要求售電業業者對於綠色電力之收購價格不可低於(或等於)零。 (3) 於「負電價」期間,即便小型生產消費者將綠色電力輸入電網,售電業者也不得因此對消費者課徵任何費用。 (4) 小型生產消費者所生產之綠色電力之計算方式,必須以實際測得之產出電力為準,不得以預估之容量為準,亦即,小型生產消費者如裝設智慧電表而可記錄綠色電力生產量時,其生產之綠色電力始有被收購之可能。 (5) 小型生產消費者之再生能源發電設備,不論容量大小,皆應符合躉購制度下之再生能源發電設備之規格標準,但不得超過5MW。   此一政策立意良善,然仍有不少質疑聲音,其中的聲音不乏:(1)BEIS如何確保小型生產消費者所獲取之契約價格,可以真實反映市場之真正應有之電價?(2)SEG於今年3月躉購費率制度廢除後半年間,可能尚未會出現定案之政策框架,其間將會產生立法之真空狀態,其間要如何減緩制度改革對於產業帶來之衝擊?(3)政府所主導之小型消費者端之智慧電表之建置,於英國仍緩如牛步,而智慧電表對於小型消費者而言,如其欲主動裝設,每具將造成300歐元之額外支出,同時每年需額外支出50歐元之維修費用,此一事實對於SEG之推行無疑將造成阻礙。

美國白宮發布國家生物經濟藍圖

  美國白宮終於2012年4月26日正式發布「國家生物經濟藍圖」(National Bioeconomy Blueprint),宣告未來美國將以生物技術為首的投資、研究與商業經濟活動列為優先支持的對象。近年來美國苦思於如何在國內經濟成長疲軟與失業問題上尋求解套,而有鑒於全球「生物經濟」(Bioeconomy)的快速崛起,歐巴馬政府遂寄望於生物經濟,期望藉由支持生物技術的研究創新與商業活動,帶動國內投資、提升就業率及經濟成長,並仰賴生物科技的發展增進國民福址。因此,白宮科學與技術政策辦公室(The White House's Office of Science and Technology Policy, OSTP)便於2011年10月起開始向生物醫藥、生物科技相關產業及研究機構徵集意見,歷經半年的規劃,始產出此部發展藍圖。   國家生物經濟藍圖首先劃定生物經濟的五大趨勢,包括:健康、能源、農業、環境及知識技術的分享。其次揭示了未來美國生物經濟的五大發展策略目標及其具體作法: (一)支持各項研發投資以建立生物經濟的發展基礎: (1)強化生物技術的各類研究發展,如生物醫藥、生質能源、生物綠建築、生物農業等 (2)實施新的補助機制以使得生物經濟投資達最大化,例如國家科學基金會於2012年推動的CERATIV(Creative Research Awards for Transformative Interdisciplinary Ventures)獎補助計畫。 (二)促進生物技術發明的市場應用與商業化: (1)加強生物醫藥的轉譯及管制科學(translational and regulatory science)發展; (2)由國家衛生研究院(National Institutes of Health,NIH)及食品藥物管理局(Food and Drug Administration,FDA)等相關主管機關主動檢視、調整既有法規,以加速生物技術成果的商業化(如生物醫藥的上市)。 (三)改革並發展相關規範,以減少法規障礙、增加規範程序的效率與可預測性: (1)減少可能影響生醫產業發展的法規障礙; (2)對於低風險的醫療裝置,降低其遵循法規的成本負擔; (3)由食品藥物管理局等相關主管機關,對於醫藥產品採行雙向規範審查(Parallel Regulatory Review),以減少產品上市時間。 (四)更新相關國家人才培訓計畫,並調整學術機構對學生訓練的獎勵機制,以符合國家與產業發展的勞動需求。 (五)支持公私夥伴及競爭前合作(Precompetitive Collaborations)關係的發展:由國家衛生研究院及食品藥物管理局等相關主管機關鼓勵、支持公私或私人部門間形成夥伴關係,共同針對生物醫藥及食品安全進行創新研究發展。   由「國家生物經濟藍圖」對美國未來生物經濟發展的策略及具體做法看來,其內容相當廣泛,從促進各種生物技術的研發投資、生技成果商業化運用、產品上市管制鬆綁、科技人員培育,再到公私部門合作的增進,完整涵蓋了整個生物技術產業發展的各個必要環節,雖已點出生物技術產業發展有待突破之處,但對於其具體法規與配套機制,仍有待日後一一落實。因此,未來本藍圖將如何形塑美國各領域生物技術產業的輪廓,並影響法規與促進機制之細節,值得持續觀察之。

日本針對遠距醫療新增「線上診療費」等診療給付項目,提高給付內容與標準

  日本厚生勞動省於2月7日公布2018年度健康保險診療報酬改訂內容,本次改訂項目中,最受矚目者為增訂線上診療之報酬給付。此種活用網路或智慧手機等資通訊網路(ICT)設施所為之診療,在2月7日中央社會保險醫療協議會總會中審議通過,公布個別改訂項目及診療報酬點數。 所謂的「線上診療」係指使用智慧手機之影像電話機能等,使醫師與病患以網路為連結所進行之診療。新設之診療報酬規定,係以具備「使用線上系統等通信技術,得為同步(real time)溝通,為診療與醫學管理。換言之,使用資通訊機器,以影像通話,透過同步影像有溝通可能性係為必要要件。   此一改訂自本年4月1日起適用,醫師診療原則上以面對面診療為原則,在包含有效性、安全性之考量下,且符合一定要件前提而為線上診療時,以「線上診療費」、「線上醫學管理費」等給付項目為給付。   因應此一改訂,厚生勞動省於本年3月30日發布並下達「線上診療適切實施指針」(醫政發0330第46號),本指針係從醫師法第20條禁止無診察診療及個人資料保護法,與線上診療之關係為出發,就到目前為止厚生勞動省發出的通知或事務聯絡等之解釋為正式整理及明確化。項目有:1.關於提供線上診療之事項;2.提供線上診療應具備之體制事項;3.其他線上診療關連事項。各自訂出「最低限度遵守事項」、「建議及獎勵事項」等,最低限度遵守事項之遵守範圍係為了明確不違反醫師法第20條規定所必要。

日本知名連鎖旋轉壽司發生營業秘密外洩爭議,顯示企業建立及持續推動內部機密資訊管理制度之重要性

  東京地方檢察廳於2022年10月21日以違反《不正競爭防止法》等為理由,起訴被告「かっぱ寿司」之營運公司「カッパ・クリエイト」公司(下稱Kappa壽司)及其前社長田辺公己(下稱田辺)等。因本案牽涉上市企業的前社長,故引起日本社會極大關注,東京地方法院已於2022年12月22日召開首次審理庭。   本案被告田辺在1998年加入「はま寿司(下稱Hama壽司)」之母公司,並於2014年到2017年間擔任Hama壽司董事;嗣後在2020年11月時,轉職至Kappa壽司。雖然田辺在離職時已簽署保密協議,但在離職前後數月間,持續透過不正當方式,取得Hama壽司之食材成本及其供應商等資訊,同時更指示仍任職於Kappa壽司之部屬製作Kappa壽司與Hama壽司之成本對照表,並以郵件方式提供被告,被告再於Kappa壽司內部使用。   雖然Kappa壽司嗣後發表公開聲明,強調並無跡象顯示該公司曾依據相關成本對照表,進行開發新產品或更換批發商等措施,但田辺在審理庭上,已承認指控,而且在被捕時,曾坦言行為動機為希望提高業績。   對於本案,有日本輿論指出海外因應人員轉職較頻繁,對於機密資訊之管理,通常訂有較嚴格的規定,惟日本目前欠缺相關觀念;亦有論者認為因為必須符合營業秘密之法定要件,始受《不正競爭防止法》之保護,故強調機密管理對於保護商業秘密及針對機密外洩之法律救濟的重要性。從本案觀之,任何產業類型的企業都可能會有屬於營業秘密的資訊,為維護企業的商業競爭力,避免因營業秘密外洩影響公司營運,企業應建立及持續推動內部機密資訊管理制度,並因應社會與管理環境變化等,精進管理模式。同時應定期進行教育訓練,提高人員的機密保護意識,強化營業秘密外洩事件發生時的舉證,以有效的主張權利。   本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP