美國聯邦法官裁決AI「訓練」行為可主張合理使用
資訊工業策進會科技法律研究所
2025年07月07日
確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。
AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。
壹、事件摘要
2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。
此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。
貳、重點說明
依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為:
一、使用的目的與性質—形成能力具高度轉化性
AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。
另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。
二、受保護作品的性質--高度創作性非關鍵因素
法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。
三、使用的數量與實質性--巨大數量係轉化所必要
法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。
四、對潛在市場或價值的影響
本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。
不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。
參、事件評析
一、可能影響我國未來司法判決與行政函釋
我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。
二、搜取網路供AI訓練資料的合理使用看法仍有疑慮
依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。
三、有效率的資料授權利用機制仍是關鍵
前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。
本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
[1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25)
[2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25)
[3]Id. at 12-14.
[4]Id. at 14-18.
[5]Id. at 30-31.
[6]Id. at 25-26.
[7]Id. at 28.
[8]Id. at 18-19.
[9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
日本在促進產學合作,除了A-step計劃外,亦成立了創新中繼站構築援助事業(Support Program for Forming Innovation Hub)與創新中心(COI)等。 創新中繼站構築援助事業,由JST協助國立研發法人推動改革,以強化法人之效能,並做為大學與企業之中繼站,大學主司研究,企業則負責產業化階段,中間點則由JST與國立研發法人一同合作。JST負責召集人才、評定人才並進行創業援助、技術調查與分析。國立研發法人則提供人才培育及交流所需之資源(例如:機具設備的整修與提供,推動研究開發等等)。 創新中心(COI)則是政府預測未來10年之社會變遷及人口結構,再根據未來社會可能之需要,以建立理想社會為目標,通常進行具有高難度、高風險研發之創新中心。目前日本有18個創新中心分佈全國各地,由國家指定企業與大學共同進行,但是研究負責人只能是大學。
德國公布最新DiGA指引,針對「系統數據分析」作補充說明德國聯邦藥品暨醫療器材管理署(Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM)於2022年3月18日發布3.1版《數位健康應用程式指引》(Digitale Gesundheitsanwendungen(DiGA) Leitfaden),主要針對3.0版未詳盡之「系統數據分析」(Systematische Datenauswertung)部分作補充說明(參考資料四,頁152以下)。 德國於2019年12月即透過《數位化創新醫療服務法》(Digitale-Versorgung-Gesetz, DVG)修訂《社會法典》第五編(Sozialgesetzbuch Fünftes Buch, SGB V)關於法定健康保險之規定,賦予數位療法(Digital Therapeutics, DTx)納保給付的法律基礎,BfArM並透過《數位健康應用程式管理辦法》(Digitale Gesundheitsanwendungen-Verordnung – DiGAV)建構處方數位療法(Prescription Digital Therapeutics, PDT)的管理架構並發布DiGA指引,使數位療法得以快速被納入法定健康保險給付範圍。 開發商之數位健康應用程式取得歐盟醫療器材規則(Medical device regulation, MDR)CE Mark I & IIa級認證之後,得向BfArM提交申請,若該應用程式「符合法規要求」(Anforderungen),並具有「積極醫療效果」(Positive Versorgunseffekte),則該應用程式最快可以在三個月取得永久許可,通過許可將被列入DiGA目錄(DiGA-Verzeichnis)當中;而若僅「符合法規要求」則會被暫時收錄,需在十二個月內補上「積極醫療效果」的證據或報告,以取得永久許可,否則會從DiGA目錄中刪除。DiGA目錄中的應用程式(包含臨時許可)會納入單一支付標準(Einheitlicher Bewertungsmaßstab, EBM),法定健康保險將依該標準表列之金額給付給製造商。 目前DiGA目錄上共有36款應用程式,當中13款取得永久許可、19款取得臨時許可、另有4款被刪除;三分之一的應用程式係用於治療焦慮或憂鬱等精神疾病,其他尚包括治療耳鳴或肥胖症等疾病。病患近用DiGA目錄中之應用程式的途徑有二:透過醫師開立處方,或是依照醫師診斷之病症自行在DiGA目錄中查找對應的應用程式後提交處方申請。法定健康保險將會依照該應用程式被使用之次數,對照EBM所列之價額後,給付費用予開發商。 「本文同步刊載於 stli生醫未來式 網站(https://www.biotechlaw.org.tw)」
歐盟發表網路博奕綠皮書(Green paper on on-line gambling)為網路博奕立法暖身歐盟於去年(2011)3月發布「網路博奕綠皮書(Green paper on on-line gambling)」,針對歐盟在網路博奕所面臨的問題提出解決對策,旨在尋求歐盟境內與網路博奕相關的利益團體支持立法推動。該綠皮書內容,主要包括以下幾項議題: 一、網路博奕服務業者之界定:歐盟內的各成員國間對於網路博奕服務業者的認定,以及發核發執照相關條件仍有分歧,使得部分業者無法在他國營業,故擬透過綠皮書諮詢各國現行制度,以及核發執照的實務,尋求認定服務實體能達一定共識。 二、提升網路博奕的服務:包括更簡易的支付方式(如使用信用卡、電子錢包、現金轉帳、預付卡等),以及提高網路中介服務提供者(ISP或網路資料儲存)的服務品質。 三、公共利益維護:包括消費者保護(如防範賭博成癮),公共秩序維護(防範詐欺、洗錢或其他犯罪)、以及博奕盈餘如何分配在公共利益事項等。 四、取締非法網路博奕服務:由於各成員國對於非法網路博奕業者或因執法不,導致非法的網路博奕服務在歐盟境內仍大行其道。故擬評估成員國執法與跨境合作現況,以及利用網路阻斷非法賭博的成效。 歐盟執委會在綠皮書公布後,利用2011年3月到7月四個月的時間蒐集包括一般公民、公、私博奕經營者,媒體相關業者,網路中介服務提供者(ISP、網路交易系統),體育賽事提供者等各界意見,並舉辦相關研討會,以討論當前歐盟網路博奕的相關問題。 根據最新消息,今年2月27日,歐盟執委會召集歐盟各國網路博奕管理機關以及專家,分就綠皮書、研討會之結論以及彙整而來的諮詢意見(共260份)加以討論。與會的歐洲博奕協會(European Gaming and Betting Association,EGBA)秘書長Sigrid Ligné支持執委會的作法,表示希望儘快推動具歐盟層級的網路博奕規範立法,以保障消費者的權益。歐盟執委會雖欲整合各成員國間有關博奕的法令,惟目前仍有反對聲浪,部分成員國希望能保有自己的網路博奕規範,故本案未來之發展,值得後續密切注意。
加拿大隱私專員與首席選舉官針對聯邦政黨發布個人資料保護指引加拿大隱私專員辦公室(Office of the Privacy Commissioner of Canada, OPC)與加拿大首席選舉官(Chief Electoral Officer of Canada, CEO)於2019年4月1日聯合針對聯邦政黨發布個人資料保護管理之指引(Guidance for federal political parties on protecting personal information)。目前加拿大選舉法(Canada Elections Act, CEA)僅概括規範政黨須制定隱私政策,以保護選民之個人資料,惟其卻未有具體法規制度落實。對此加拿大隱私專員辦公室認為政黨必須提出具體隱私政策來履行其法律義務。 現行加拿大選舉法規範聯邦政黨必須於其網站上公布隱私政策,並提交給加拿大選務局(Elections Canada)。若其隱私政策變更,必須通知首席選舉官,且即時更新網站上隱私政策版本。加拿大聯邦各政黨須於2019年7月1日前完成相關規範,為具體實踐政黨隱私保護制度,加拿大隱私專員辦公室提出幾點隱私政策之必要條件: 一、 聲明蒐集個人資料之類型與如何蒐集個人資料? 二、 如何保護其蒐集之個人資料? 三、 說明如何利用個人資料?是否會將個人資料給予第三方? 四、 針對個人資料蒐集、利用之人員如何培訓?內部控管機制為何? 五、 蒐集分析之資料為何?是否有利用cookie或相關應用程式蒐集? 六、 設置處理個資隱私疑慮專責人員 除此之外,該辦公室更建議參採國際隱私保護作為,著重公平資訊原則,政黨於個資隱私保護上須有其問責制、目的明確性、透明化、限制性蒐集,且未經當事人明確同意不得蒐集政治觀點、宗教或種族等敏感性個資,並應建置保障性措施與合規性管理機制。