IMDRF於2025年3月提出《醫療器材監管依賴計畫操作手冊》草案,促進國際監管的一致性與產品流通性

一、緣起與目標
「依賴制度(reliance)」指一國有效利用他國的審查結果,而減少重複作業、提升效率,並促進病人更快取得安全、有效產品的政策。為此,國際醫療器材法規管理論壇(International Medical Device Regulators Forum, IMDRF)於2025年3月提出《醫療器材監管依賴計畫操作手冊》(Playbook for Medical Device Regulatory Reliance Programs)草案,協助各國建立與管理依賴制度。惟此制度並非「無條件接受他國決策」或「國際換證」,而須由各國自行決定如何利用依賴制度,並承擔最終監管責任。

二、應用範圍
該手冊適用於所有醫療器材(含體外診斷器材)或輔具,並涵蓋產品生命週期各階段(如技術文件審查或品質管理系統驗證等)。

三、依賴機制的類型
手冊歸納三類依賴機制並舉例說明:
1.工作共享(Work-sharing):指多國協作進行監管任務,可為聯合評估、聯合檢查,或共同推出監管標準等。如IMDRF推出的「醫療器材單一稽查計畫」,訂定多國之驗證機構對製造商的統一稽核標準,使廠商受稽後所作成的稽查報告可一次性符合數國法規。
2.簡化審查(Abridged Review):以他國完整的審查成果作為基礎,僅針對當地「特有」及「新增」的風險進行審查。如新加坡健康科學局已實施簡審制度。
3.承認(Recognition):正式接受他國監管決策結果作為判斷依據,可分為單、雙、多邊的承認。如CE標誌的醫材可在歐盟27個成員國內通行。

四、結語
IMDRF並非藉由該手冊推行「最佳模式」,而是協助各國依需求發展適合的監管依賴策略,加強協作與資源共享,進而促進全球監管上的一致性與產品流通性。近年世界衛生組織及區域組織(如歐盟、東協、非洲聯盟發展署)越加重視各國監管法規的一致性,並將審查資源移向人工智慧或高風險醫材的監管探索中,此監管趨勢值得我國持續關注。

相關連結
※ IMDRF於2025年3月提出《醫療器材監管依賴計畫操作手冊》草案,促進國際監管的一致性與產品流通性, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9359&no=16&tp=1 (最後瀏覽日:2026/02/20)
引註此篇文章
你可能還會想看
美國參議員提案鬆綁天使投資人須揭露自身財務資料的規定

  美國民主黨參議員Chris Murphy在2015年4月16日捲土重來提出「榮光法案」(Helping Angels Lead Our Startups Act,以下簡稱HALOS Act)。HALOS法案在上個會期胎死腹中,此次重新提出,旨在強調暢通管道以投資新創公司之重要性,Murphy表示:「我們應該尋求更便利的管道,讓各種財務狀態但具備財務知識的投資人(knowledgeable investors of any financial status)都能投資新創公司,利用他們的專業和資金來增強新創公司成功的可能性。」   舉辦「Demo Days」或「Pitch Events」,是現行許多美國創業家藉以增加與天使投資人(Angel Investors)連結的方式。在「Demo Days」此種場合,創業家通常僅向與會者展示其產品或服務,而不主動進行籌資,避免提及或發送與公司財務預測、業務成長等等與招募投資人有關的資訊、文件。   在「Pitch Events」的場合,其主要目的則為發掘潛在投資人,進而籌募新創公司所需之資金。但此種類似投資說明會的「Pitch Events」必須受到美國2012年「新創企業啟動法」(Jumpstart Our Business Startups Act,以下簡稱JOBS法)的規範,也就是會議進行方式是否涉及1933年證券交易法Rule 502(c) of Regulation D所指之「公開徵求」(general solicitation)、參與者是否為「合格投資人」(accredited investor)等問題。所謂的合格投資人是指符合一定的資格而足以被認定具有充分財務決定能力,JOBS法因此要求這些天使投資人必須交出一定的個人財務資料作為佐證。   批評者認為這些規定無助於讓新創公司籌募所需資金,也因此無法創造更多就業機會,因為許多投資人對於必須將自己的財務狀況分享給新創公司,甚至是活動策展人,往往是感到不太自在的。Murphy參議員認為這些規定是「繁瑣的第三方審核程序」、「是一種對隱私的侵犯,嚇跑了那些想要想要支持新創公司的投資人,特別是在新創公司最需要資金的時刻」。   Murphy參議員提出此法案回應了批評者的建議,主張法規對於這些天使投資人團體(Angel Investor Group)應該有不一樣的規範方式,因為這些天使投資人與新創公司通常早已具有家族或朋友等人際網絡關係。

英國醫學總會新指南 提醒醫師在保護病患隱私權和保護可能具有共同基因者健康之間做出衡平

  英國醫學總會(General Medical Council, GMC)在2009年9月公佈了一份有關醫師保密義務的指南(Guidance for doctors - Confidentiality),該指南針對基因檢測資訊的部份指出,病患的基因資訊和一些其他的資訊,有時也會是和病患擁有共同基因或其它連結的其他人的資訊,因為,在病患身上所診斷出來的因有缺陷基因所造成的疾病,可能也就指出了和病患有血緣關係的親屬的發病可能性,或甚至是幾乎可以確定他們未來也會發病。此時,醫師要提醒病患應該立即通知也有可能有此有缺陷基因的親屬,以期能夠協助那些親屬接受預防治療或作更進一步的檢查,對潛在的健康問題有所準備。   然而,若是病患表示了反對的意思,例如病患是來自一個破碎的家庭,和親屬的關係並不良好,或是基於其它個人的理由,所以不願意告知親屬相關有缺陷基因的風險時,則指南提醒醫師應該要自行衡量身為醫師對於保護病患所需遵守的義務,以及協助保護他人免於嚴重傷害兩者之間孰輕孰重。此外,若經過醫師的判斷之後,決定要向那些親屬告知他們所可能面對的健康風險時,醫師必須要採行不會透露病患身份的方式為之。   當然此種基因檢測資訊的通知,引起了正反兩極的評價,反對者主張此舉將嚴重侵害病患隱私權,也可能損害了醫師與病患間資訊保密的原理原則。唯贊成者則指出,許多的基因疾病,如亨丁頓舞蹈症、囊狀纖維化(Cystic fibrosis)、血友病(Haemophilia)、及乳癌(Breast cancer)等,都有著極高的遺傳性及致死率,透過此一機制所能達到的早期警告的效果,或可使得帶有相同有缺陷基因的病患親屬,能夠對潛在的健康問題及早有所準備。且若該等親屬正要或未來要透過試管嬰兒取得下一代時,亦可在執行試管嬰兒的程序中進行篩檢,防止下一代的人生繼續遭受此種有缺陷基因所帶來的疾病。

美國聯邦通訊管理委員會對LPTV的新管制措施

  為了確保農村地區低功率電視(LPTV)播送的服務,與協助該等地區傳輸數位訊號,美國聯邦通訊委員會(FCC)決議從2009年8月25日起,不再接受新的類比傳輸運用與設備建置之申請,只允許新的數位低功率電視(new digital-only LPTV)及其有關之電視訊號轉換站的設置申請。此申請機會將限於特定區域,以及採行「先申請先服務」(first-come, first-served)的處理程序。此外,針對全國性的核發執照申請,則於2010年1月25日開始受理。   低功率電視起源於1982年,係FCC為了地方導向、實踐表意自由權利與促進文化多樣性,而在小型社區允許低功率電視執照擁有者得享有「次級性頻譜使用權」(secondary spectrum priority),於VHF(2-13)或UHF(14-51)頻段中,提供電視節目播送之服務。   根據2005年聯邦赤字削減法(Federal Deficit Reduction Act of 2005)規定,美國已於2009年6月12日全面停播類比訊號節目,改以數位訊號播送,但該法並未規範低功率電視台播送訊號的數位化時程,故有關既有低功率電視相關之管制亦須一併修訂,方能達到全數位化的視聽環境目標。

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

TOP