美國商務部國家技術與標準局公布技術創新計畫(TIP)之執行規則草案,徵求外界意見

  過去十餘年來,美國商務部國家技術與標準局(The Commerce Department’s National Institute of Standards and Technology, NIST)推動的「先進技術計畫」(Advanced Technology Program, ATP),成功帶領美國中小企業透過技術的研發投入,創造美國經濟榮景。近年來面對變動劇烈的國際環境,為提升美國競爭力,美國總統於2007年8月9日簽署通過「意涵深遠地促進傑出技術、教育與科學之美國機會創造法」(The America Creating Opportunities To Meaningfully Promote Excellence In Technology, Education, And Science Act, 簡稱The America COMPETES Act)。

 

  The America COMPETES Act特別授權NIST負責推動並執行一項新的研究補助計畫-技術創新計畫(Technology Innovation Program, TIP),企圖藉由在國家重點需求領域(critical national need areas),補助具有高風險性及高報酬的技術研究(high-risk, high-reward research),支持、促進並加速美國的創新。所謂「高風險、高報酬」之技術研究,指具有以下三項特質的技術研究:(1)研究可轉化成具體實益的潛在可行性,其成果將產生深遠及廣泛的影響;(2)研究計畫的進行係為了回應屬NIST技術職掌範圍內的重大國家需求;(3)研究的技術議題過於創新(too novel)或跨越甚多學科(spans too diverse a range of disciplines),以致傳統的專家審查程序無法適當地用來篩選此類計畫。至於「國家重點需求領域」,指問題觸及的面向極大,然須要被克服的社會挑戰(societal challenge)尚無因應之道而有賴國家予以關注,此等問題與社會挑戰可能可以透過高風險、高報酬研究之進行而予以解決者。

 

  根據The America COMPETES Act,TIP將依研究實力競爭(on the basis of merit competitions)的原則,透過分攤成本的研究補助(cost-shared research grants)、合作協議(cooperative agreements)或契約(contracts)等方式,鼓勵業界單獨或共同(透過合資方式)提出技術創新的研究計畫申請以合資方式提出者,其主導者(lead entity)可為中小型企業或高等教育機構。TIP的補助對象限於設立於美國並在美國境內經營其主事務的中小型企業,外國企業參與TIP若符合美國經濟利益者,亦得獲得補助。TIP的補助金額不超過個別研究計畫總成本的半數,且只能用於補助直接成本,間接成本、收益或管理費則不在補助之列。總計對單一單位的補助以最長三年且不超過三百萬美元為限;對於合作研究則以最長五年且不過過九百萬美元為限。由於The America COMPETES Act僅就TIP的補助目的、補助對象、補助條件等作原則性規定,其運作細節仍有待NIST進一步設計,日前NIS已於2008年3月7日對外公布TIP執行規則草案,徵求各界意見。

 

  隨著TIP的規劃與實際運作,過去由NIST所執行的ATP也將完成其歷史性任務,由TIP取代並宣告美國政府支持產業技術研發的新理念-亦即透過支持高風險、高報酬之技術研究,以回應美國的國家重點需求領域。

 

  身為全球創新的龍頭,美國所提出的科技研發創新政策向為各國學習與參考借鏡的標竿,隨著The America COMPETES Act的通過,新法中關於美國產業創新的新機制規劃,已引起其他國家高度關注。印度科技與地球科學(Science & Technology and Earth Sciences)部長在The America COMPETES Act通過的一個月後即宣佈,印度政府將於短期內提出全面性的印度創新法案(Indian Innovation Act),藉以激勵印度的創新,而此項創新法案將會以美國的America COMPETES Act為參考模型。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 美國商務部國家技術與標準局公布技術創新計畫(TIP)之執行規則草案,徵求外界意見, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=64&tp=1&d=2738 (最後瀏覽日:2025/07/02)
引註此篇文章
你可能還會想看
智慧聯網基礎設施與應用服務之法制建構-資訊安全與車聯網之例

RFID應用與相關法制問題研析-個人資料在商業應用上的界限

論我國廣播電視與電信事業跨業經營相關規範

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

TOP