歐盟開創奈米醫學的新革命

  歐盟國家期望未來能夠發現對抗流行性致命疾病的新方法,降低醫療成本,並提高行政體系的效率,成為開創奈米醫學的先驅。


  位於法國南部格勒諾布爾(
Grenoble )的電子科技與資訊實驗室( the Electronics Technology Information Laboratory Patrick Boisseau 說明,奈米分子可以穿透人類身體內的各器官與細胞,克服傳統醫學不能檢測、治療與給藥的地方 因而開啟新興醫療技術的無限可能 未來病人可以接受因其特殊需要而作的治療,降低醫生治療的風險。


  歐盟贊助的眼角膜工程研究計劃(
Cornea Engineering Project )是重新排列組合人類蛋白質,創造與人類眼角膜相似的物質,這比人造眼角膜的治療更有效,且較不會受到排斥。此項計劃每年已幫助歐盟 28,000 人。在編列總預算 437 萬歐元( 541 萬美元)中,針對該項計劃,歐盟已經花費 256 萬歐元( 317 萬美元)。而每年編列 6 億美元( 4 8 4 佰萬歐元)用於奈米科技方面。同樣的,人工關節之再造也幫助歐盟各國 4,000 人。


  奈米科學過去僅著重於電子科學領域的應用,而未來將朝向整合物理學、化學、機械學、生物學與電子學各領域之路邁進。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 歐盟開創奈米醫學的新革命, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=64&tp=1&d=486 (最後瀏覽日:2025/11/19)
引註此篇文章
你可能還會想看
美國最高法院判決診斷方法不具可專利性

  美國最高法院近日在Mayo Collaborative Services與Prometheus Laboratories一案中判決2項與免疫疾病有關的診斷方法專利無效,業界擔憂該判決將對處於新興發展階段的個人化醫療領域的研發投入與創新有著負面影響。   本案源於Prometheus所擁有的在不同劑量下thiopurine藥物代謝情況的診斷方法專利(由於病患的藥物代謝率不同,因此醫生在判斷特定病患的藥物劑量高低有相當的困難度),Mayo購買使用Prometheus的診斷方法後, 2004年Mayo開始對外販售自己的診斷方法。Prometheus主張Mayo侵害其專利,聯邦地方法院認為該專利建構於自然法則與現象上,因此不具可專利性,但聯邦巡迴上訴法院則有不同的看法,本案因此一路爭執至最高法院。   對於自然法則、現象以及抽象的概念,基於其作為科技發展的基礎工具,為避免妨礙創新發展,一直以來法院都持不具可專利性的看法。在相關的前案中,唯有在自然法則之外,包含創新概念的元素,才能超越自然法則本身而成為專利。本案中最高法院表示,本案專利方法步驟,不符合前述基於創新概念而授與專利的條件,且該方法步驟為該領域人所熟知、常用,授與專利將導致既有的自然法則被不當的受限而影響後續進一步的發現。   評論者表示儘管該判決並未提供一個清楚的判斷標準,但並不因此讓下級法院對這類的個人化醫療專利全數否決。然本案對於可專利性客體的判斷,影響將不僅止於生命科學,進而包括所有涉及可專利性客體的軟體、商業方法類型專利,後續影響值得持續關注。

美國聯邦法官裁決AI「訓練」行為可主張合理使用

美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

美國著作權局發布「具AI產出之著作註冊指引」,關鍵在人類智慧貢獻程度

美國著作權局(US Copyright Office,USCO)於2023年3月16日頒布「具AI產出之著作註冊指引」(Copyright Registration Guidance: Works Containing Material Generated by Artificial Intelligence),本指引之發布係由於近年美國著作權局時常收到人工智慧著作之註冊申請案,對於此類著作是否可以成功註冊,過去未有較明確之判斷準則,如此恐造成美國著作權體制之紊亂,著作權局遂發布本指引,以作為民眾申請註冊之著作包含利用AI創作內容時之指導依據。 本指引首先認定「著作人」之概念須為人類,此部分與美國憲法、美國著作權法及美國最高法院判例見解相同。 接著,本指引並描述到欲申請之著作,除前開之著作人須為人類外,人類須於該著作中傳達其原始精神理念(own original mental conception),不得為單純之透過機械運作所產生。惟此並非代表人類完全不得運用AI輔助創作,係取決於人類對該創作之創造性控制程度及該創作實際形成(Actually Formed)作者之傳統元素含量。 最後,本指引提出申請人於提出具AI產出著作時應提交之表格為標準表格(Standard Application),在創作者欄位中具體闡述人類作為作者之具體貢獻身份,且不能將AI列為作者或共同作者。至於在本指引發布前已提出之申請案,該指引提到申請人可以透過補充說明之方式,通知著作權局其著作中涉及AI產出部分,並就該部分聲明不專用,以符合新指引所要求之「揭露」。 綜觀以言,可以認定本指引之提出可作為著作人申請註冊時之遵循依據,初步解決過去未有AI著作申請註冊參考依據之弊病,然尚有許多細節待補充,且甚仰賴個案之判斷,惟本文認為未來隨AI科技之發展及廣泛利用,關「人類智慧」於著作貢獻程度更明確、更為具體之判斷標準勢必將應運而生,值得持續關注。

德國因應歐盟一般資料保護規則(GDPR)之通過,即將進行該國資料保護法(BDSG)修正

  德國聯邦資訊技術,電信和新媒體協會(bitkom)於2016年9月2日釋出將以歐盟新制定之一般資料保護規則(GDPR)內容為基礎,調整德國聯邦資料保護法(BDSG)之修法動向。   德國政府正在緊鑼密鼓地調整德國的資料保護立法,使之與歐盟GDPR趨於一致。已知未來將由“一般聯邦資料保護法”取代現行的聯邦法律。草案內容雖尚未定稿,但修正方向略有以下幾點:   首先,德國未來新法不僅參考GDPR、也試圖將該法與GDPR及歐盟2016年5月4日公告之歐盟資訊保護指令Directive(EU)2016/680相互連結。該指令係規範對主管機關就自然人為預防,調查,偵查等訴追刑事犯罪或執行刑事處罰目的,處理個人資料時的保護以及對資訊自由流通指令。   其次,新法將遵循GDPR的結構,並利用一些除外規定,如:在資料處理時企業應指派九人以上資料保護官(DPO)的義務。某些如通知當事人的義務規定,亦有可能在存有更高的利益前提下,限縮其履行範圍。此意味某些通知義務有可能得不適用,例如履行該義務需要過於龐大人力、資金支出、耗費過多等因素。   第三,聯邦法律將保留一些規定,如上傳給信用調查機構的條款、雇傭契約中雇用方面處理個人資料的條款,以及在公眾開放地區使用電子光學裝置監視的條款等。   最後,立法修正動向值得注意的重點尚有,(1)未來德國立法者將如何應對新的歐洲資料保護委員會(EDPB)中德國代表的地位(represe。由於EDPB將發布具有約束力的決定,針對爭議內容的決定意見,德國內部顯然應該統一意見。蓋因迄今為止的德國聯邦資料保護監察官(17個)經常提出不同的見解。此外,(2)還應該觀察聯邦資料保護監察官是否應該賦予權限,向法院提出對歐盟爭議決定或法律救濟,使案件進入德國法院,以爭執歐盟執委會所為之決定是否具備充足理由。前此,德國聯邦參議院(代表十六邦)2016年5月已要求聯邦政府引進新規定,使資訊監察保護官有請求法院救濟之權。這項源於安全港協議判決的討論,將來有可能提供德國資料保護監察官,挑戰隱私盾協議的可能性。但新法案是否會解決這一問題,這還有待觀察。   可預見在2017年9月下一屆德國聯邦議會選舉前,將通過法案。

TOP