美國紐約州律師 Eliot Spitzer 4 月 4 日 表示, 他已經 對 Direct Revenue LLC 這家網路公司提出告訴。控訴其秘密安裝上百萬之間諜軟體( Spyware )至網路使用者的電腦中,或利用已安裝於使用者硬碟中之間諜軟體,以彈出視窗方式進行廣告,而其中有很多都屬於色情廣告;這些程式具追蹤網路使用者活動之功能,且一經下載,使用者就極難移除甚至不易察覺。 Spitzer 將此訴訟上訴到紐約州之最高法院,認為 Spitzer 應該為未經使用者同意秘密安裝間諜軟體,或透過已存在的間諜軟體寄送廣告之行為負責。 Spitzer 同時要求 Direct Revenue ,應對其所受之利益和不特定的金錢損害,負擔賠償責任。 去年( 2005 ), Spitzer 也對在洛杉磯的 Intermix Media Inc. 提起告訴。這家公司擁有一個相當受歡迎的 MySpace 的社交網絡網站,卻將間諜軟體隱藏附隨在上百萬的免費程式中,最後 Intermix Media Inc. 因而付了 750 萬美元。 Spitzer 表示這種詐欺的行為對消費者極不公平,且將對利用正當管道行銷的企業以及需要消費者信任的小型網路商家造成損害。 Spitzer 也說到,他將會繼續的與消費者站在同一陣線,與消費者共同為他們的掌控權而戰。 Direct Revenue 網站說明指出,他們已事先取得消費者之同意,而其提供之內容資訊和免費軟體,目的在交換傳遞廣告之功能。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
執法部門無搜索令要求提供手機位置記錄並未違憲美國聯邦第六巡迴上訴法院於2016年4月13日就U.S. v. Timothy Ivory Carpenter & Timothy Michael Sanders案作出判決,裁定執法機關在未取得搜索令的情況下要求出示或取得手機位置記錄,並不違反憲法增修條文第4條。美國憲法增修條文第4條規定:「人人具有保障人身、住所、文件及財物的安全,不受無理之搜索和拘捕的權利;此項權利,不得侵犯;除非有可成立的理由,加上宣誓或誓願保證,並具體指明必須搜索的地點,必須拘捕的人,或必須扣押的物品,否則一概不得頒發搜索令。」 本案事實係聯邦調查局取得兩名涉及多起搶劫案之嫌疑人的手機位置,而根據手機位置之相關資料顯示,於相關搶案發生之時間前後,該二名嫌疑人均位於事發地半英哩至兩英哩的範圍內,故該二名嫌疑人隨後被控多項罪名。在肯認與個人通訊相關之隱私法益的重要性的同時,聯邦第六巡迴上訴法院認為,「縱使個人通訊之內容落於私領域,但是為了將該些通訊內容自A地至B地所必須之資訊,則非屬私領域之範疇。」聯邦第六巡迴上訴法院拒絕將憲法增修條文第4條的保護延伸至像是個人通訊或IP位址等之後設資料(metadata),其原因在於,蒐集此等資訊或記錄並不會揭露通訊的內容,因此本案之嫌疑人就聯邦調查局所取得之資訊並無隱私權之期待。法院認定,此等行為不同於自智慧型手機取得資訊,因為後者「通常而言儲存了大量有關於特定使用人之資訊。」 2015年11月9日,美國聯邦最高法院拒絕審理Davis v. United States案,該案係爭執搜索令於執法部門要求近用手機位置資料時之必要性。加州州長Jerry Brown於2015年10月亦簽署加州電子通訊法(California Electronic Communications Act, CECA),該法禁止任何州政府的執法機關或其他調查單位,在未出示搜索令的情況下,要求個人或公司提供具敏感性之後設資料。
論ENUM服務推動與應用之法制議題