日本閣議公布建築節能法修正案

  2019年2月15日閣議公布《建築物能源使用效率提升法》(建築物のエネルギー消費性能の向上に関する法律,以下稱「建築節能法」)的修正案,將根據住宅及建築物的規模、用途等特性,採取高效性綜合對策,以達到2030年節能目標。

  本次《建築節能法》主要修正內容,包含:

  1. 非住宅之建築物(如商辦大樓):原針對新建、改建、擴建大規模(樓地板面積2000m2以上)建築物應符合「建築物能源使用效率基準」(建築物エネルギー消費性能基準)之強制規定,將擴及中規模(樓地板面積300m2~2000m2)建築物。另外,新增若複數建築物共同執行的「提升建築物能源使用效率計畫」,經當地相關主管機關認定後,可獲得容積獎勵之規定。
  2. 改善大型集合住宅審查制度:針對建築物起造人及承造人須向當地相關主管機關提交「確保建築物能源使用效率的構造與設備計畫」的審查制度,將簡化審查程序,以減少行政機關負擔及提高行政效率。
  3. 建築師及住宅業者之義務:
    (1) 新增設計小規模(樓地板面積不到300m2)建築物的建築師有義務向建築物起造人及承造人,說明該物件的能源使用效率。
    (2) 住宅Top Runner制度:原規範大型住宅業者供給之建案獨棟住宅應符合住宅Top Runner基準,現將物件範圍擴及客製化獨棟住宅及小型出租公寓。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 日本閣議公布建築節能法修正案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=64&tp=1&d=8196 (最後瀏覽日:2024/05/19)
引註此篇文章
你可能還會想看
Google預期推出智慧金融卡

  科技巨頭Google目前預計依循Apple Card模式,與花旗銀行、Stanford Federal Credit Union合作開發「Google Card」智慧簽帳金融卡。   雖目前尚未正式發行,但根據TechCrunch報導指出,使用者在連結銀行帳戶後,可向Google Card轉入資金或從卡中轉出資金,消費時會直接從個人連結的銀行帳戶扣款。此外,Google Card將連接到具有新功能的Google應用程式,讓使用者得以輕鬆監管消費狀況、確認餘額或鎖定帳戶。   這對於Google來說,為非常重要的一步,因Google本身掌握巨量資料,因此透過Google Card,Google有機會獲得新的收入和消費數據,其將向消費店家酌收交易手續費,再與銀行拆分;此外,Google Card的隱私權政策中,可能利用用戶消費的交易數據,以改善投放商品廣告的衡量標準,若Google可以其金融商品推動銷售,將使更多的品牌願意購買Google廣告。   長期影響來看,Google Card可為Google提供銀行業務,包括股票經紀業務、財務建議或AI會計、保險、借貸諮詢,而因Google掌握大量數據,將可能使Google比傳統金融機構更能準確的管理金融風險,透過應用程式、廣告、搜尋和Android系統,Google和消費者之間建立深厚關聯,為推廣和提供金融服務建立一個充足的背景。隨著武漢肺炎疫情的漸緩,高利潤的金融商品也將幫助 Google 開發有效的收入機會並藉此提升股價。

美國「刑事鑑識演算法草案」

  美國眾議院議員Mark Takano於2019年10月2日提出「刑事鑑識演算法草案」 (Justice in Forensic Algorithms Act),以建立美國鑑識演算法標準。依據該法第2條,美國國家標準與技術研究所(National Institute of Standard)必須建立電算鑑識軟體之發展與使用標準,且該標準應包含以下內容: 一、以種族、社會經濟地位、兩性與其他人口特徵為基礎之評估標準,以因應使用或發展電算鑑識軟體,所造成區別待遇產生之潛在衝擊。 二、該標準應解決:(1)電算鑑識軟體所依據之科學原則與應用之方法論,且於具備特定方法之案例上,是否有足夠之研究基礎支持該方法之有效性,以及團隊進行哪些研究以驗證該方法;(2)要求對軟體之測試,包含軟體之測試環境、測試方法、測試資料與測試統計結果,例如正確性、精確性、可重複性、敏感性與健全性。 三、電算鑑識軟體開發者對於該軟體之對外公開說明文件,內容包含軟體功能、研發過程、訓練資料來源、內部測試方法與結果。 四、要求使用電算鑑識軟體之實驗室或其他機構應對其進行驗證,包含具體顯示於哪個實驗室與哪種狀況下進行驗證。此外,亦應要求列於公開報告內之相關資訊,且於軟體更新後亦應持續進行驗證。 五、要求執法機關於起訴書或相關起訴文件上應詳列使用電算鑑識軟體之相關結果。

歐盟提出共同策略架構以打造完整之創新研發供應鏈

  歐盟執委會(The European Commission)於2011年2月9日提出「從挑戰到機會:邁向歐盟研發創新補助之共同策略架構」綠皮書(Green Paper - From Challenges to Opportunities: Towards a Common Strategic Framework for EU Research and Innovation funding,以下簡稱綠皮書),以整合現有研發創新補助機制(包括FP、CIP及EIT)、改善參與容易度、增進研發之科學影響及經濟價值為目標,提出以共同策略架構(Common Strategic Framework)作為歐盟未來創新研發補助機制的構想,希冀藉此串聯基礎研究、技術服務商品化及非技術性創新等環節,以打造完整之創新研發供應鏈(innovation chain)。   歐盟共同策略架構包括了三大重點目標:1.聚焦於「提供歐盟一個世界級的科學基地」、「增進跨國間競爭」及「解決重大挑戰」;2.使歐盟研發補助更具吸引力且更易進入;3.建立更為一致的會計制度,使補助資金的使用更為容易。   歐盟綠皮書在具體作法與詳細內容上雖有待擬定,但針對現有研發補助機制之改進已提出明確方向,包括:釐清補助目標、減少法規複雜性、增進補助的附加價值與影響力,同時避免資源重覆及分散、簡化參與程序、擴大補助計畫參與、透過補助增進競爭等。此外,執委會亦已預定於2011年底提出具體立法建議,未來此一立法將為歐盟科技研發補助架構帶來如何之變革與影響,值得密切注意。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP