日本在2019年6月14日正式施行「確保表演入場券流通正當性之禁止不當轉賣特定表演入場券相關法律」(特定興行入場券の不正転売の禁止等による興行入場券の適正な流通の確保に関する法律),簡稱票券不當轉賣禁止法(チケット不正転売禁止法),其以訂立專法之方式,來防止黃牛業者先大量取得票券,再以賺取高額差價之方式牟利。其重點包括:
日本政府並針對2019年9月份在日本所舉辦之橄欖球世界杯及2020年在東京所舉辦之奧運會加強宣導該法令。我國熱門活動、演唱會也常面臨黃牛掃票,再高額轉售之問題。日本之立法模式,不失為我國參考借鏡之對象。
近年來,由於(European Food Safety Authority, 簡稱EFSA)對GM產品之管理並未能進行足夠之科學分析,同時,亦過份仰賴業者所提供之數據資料等原因,而造成歐盟某些會員國家對EFSA所作出之評估報告於公正及客觀性方面產生質疑;甚至,歐洲食品業者亦對目前EFSA是否將會因為專家人力不足而導致整體風險評估能力下降之問題表示關切。一位EFSA官員指出:我們需要更多科學專家來協助處理與風險評估有關之事務。 其次,隨著各界因對GMO產品不當之批判與歐洲整體食品安全評估工作量增加等因素,EFSA於日前決定,欲透過建立一外部專家資料庫(External Expert Database),來協助其風險評估工作之執行並促進評估專家招募過程之透明化,以達成免除外界對於歐洲食品安全評估過程疑慮之目的。不過,這些將提供協助之專家,並不會因此而真正成為EFSA科學評估小組成員(其將被視為是由人民主動對該小組執行評估工作提供協助)。除EFSA擬徵求歐盟境內專家學者外,未來其亦將邀請歐盟以外其他國家並在該領域為重要研究先驅之專家提供協助,以增加風險評估之品質與客觀性。 再者,綠色和平組織歐洲發言人Mark對於EFSA現階段執行之工作狀況也表示意見並指出:目前EFSA是在一種配備不良(ill-equipped)之狀態下,來勉強執行其所執掌之事務;不過,更讓人感到憂心者,則是由EFSA科學評估小組所做出科學性之意見,於不同會員國家間或於歐盟以外其他國家其是否仍將會被完全採納之問題。有鑒於此,相關人士認為:應再次強化EFSA於風險評估方面之能力! 最後,一位非政府機組織專家也提醒:僅單純地透過專家庫之建立,其實,並不能圓滿地解決當前EFSA於決策機制中所遭遇之困難;而只有當EFSA在未來欲邀請外部專家提供協助與支援時,一併將資金及相關政策配套措施納入考量後,才是此問題真正解決之道。
美國司法部對標準制訂組織所採取之新政策出競爭法上之意見美國聯邦貿易委員會(Federal Trade Commission, FTC)於今(2006)年8月做出一項重要處分,認定Rambus Inc對其他標準制訂組織成員隱瞞其研發之多項電腦技術的專利,並打算在標準制訂組織採用特定標準後實施其專利的行為,乃以不法方式獨占市場之行為,違反反托拉斯法。 在FTC作成Rambus 的決定後,標準制訂組織也開始嘗試一些防止Rambus案情形發生的事前因應之道,例如已推動電腦系統互連標準的電腦協會VITA,就採行了一項新的標準制訂政策,該協會要求其參與成員必須承諾,階段性釋出其專利及專利申請的資訊,包括其所設定的最高權利金費率與可能採取的最嚴格的限制性授權條件;另其標準制訂政策也禁止成員間就此等專利的權利金費率或授權條件私下協商。由於有認為這種作法可能會被認為是破壞市場競爭秩序的杯葛行為,故VITA乃向美國司法部反托拉斯局徵詢其意見。 2006年10月30日,美國司法部反托拉斯局(Antitrust Division of the Department of Justice)提出一份商業檢視信函(business review letter, BRL),正式對此問題提出看法。司法部反托拉斯局在BRL中指出,基於以下幾點考量,VITA的標準制訂政策尚無限制競爭的疑慮:(1)共同制訂標準可能可帶來諸多有助於競爭的優點;(2)協會此項政策可使成員在推動制訂標準時,有更為充分的資訊作成決定;(3)專利授權條款的事前揭露可避免標準制訂可能因為事後過高的授權金,導致其導入或取代既有技術之時程被拖延。
法國資料保護機關要求Clearview AI刪除非法蒐集的個人資料法國國家資訊自由委員會(Commission nationale de l’informatique et des libertés, CNIL)自2020年5月起陸續收到民眾對臉部辨識軟體公司Clearview AI的投訴,並展開調查。嗣後,CNIL於2021年12月16公布調查結果,認為Clearview AI公司蒐集及使用生物特徵識別資料(biometric data)的行為,違反《一般資料保護規範》(General Data Protection Regulation,GDPR)的規定,分別為: 非法處理個人資料:個人資料的處理必須符合GDPR第6條所列舉之任一法律依據,始得合法。Clearview AI公司從社群網路蒐集大量全球公民的照片與影音資料,並用於臉部辨識軟體的開發,其過程皆未取得當事人之同意,故缺乏個人資料處理的合法性依據。 欠缺保障個資主體的權利:Clearview AI公司未考慮到GDPR第12條、第15條及第17條個資主體權利之行使,特別是資料查閱權,並且忽視當事人的個資刪除請求。 因此,CNIL要求Clearview AI公司必須於兩個月內改善上述違法狀態,包括:(1)在沒有法律依據的情況下,停止蒐集及使用法國人民的個資;(2)促進個資主體行使其權利,並落實個資刪除之請求。若Clearview AI公司未能於此期限內向CNIL提交法令遵循之證明,則CNIL可依據GDPR進行裁罰,可處以最高 2000萬歐元的罰鍰,或公司全球年收入的4%。
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。