何謂「AI創作物」?

  日本智慧財產戰略本部之「次世代智財系統檢討委員會」於2016年4月18日公布的報告書針對「AI創作物」有諸多討論,截取部份內容如述。

  以現行著作權法來看,自然人創作產生的創作物,受到著作權保護並無疑問。倘若係自然人利用AI做為道具產出的創作物,若具備(1)創作意圖;(2)創作貢獻,兩種要件,亦得取得權利。然而,若該創作物僅透過人類指示,過程係由AI自主生成,此時該創作物即屬於AI創作物,目前非屬著作權法保護之範圍。惟上述三種情況在外觀辨識上極為困難。換言之,人類創作物與AI創作物之界線已愈趨模糊。

  AI創作物可能具備多種態樣,包括:音樂、小說等,甚至包括新技術及服務的生成。以音樂、小說為例,由於日本著作權法係以「創作保護主義」為前提,只要該創作物完成時具有原創性,即受著作權保護,AI的特性可能會造成該當著作權保護之著作物數量遽增;若AI產生的成果屬於技術或服務,以專利審查需具備新穎性、進步性等要件而言,得獲取專利權難度相對比較高。

  而日本政府在討論AI創作物是否具有「保護必要性」,主要係以智財權「激勵理論」出發,該理論核心在於保護人類的投資行為應獲得合理報酬,才有續行創作的動機。

本文為「經濟部產業技術司科技專案成果」

你可能會想參加
※ 何謂「AI創作物」?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=64&tp=5&d=7317 (最後瀏覽日:2024/10/08)
引註此篇文章
你可能還會想看
聯網自動駕駛車(CAV)

  聯網自動駕駛車(Connected and Autonomous Vehicles, CAV)是一種自動化聯網載具,係自動駕駛車以及互聯汽車兩種科技的集合,而CAV僅須符合其一即可稱之。按英國交通部的定義,自動駕駛車係為「無須稱職的駕駛者管理各種道路、交通與天候條件之下,能安全完成旅程的車輛。」目前上市產品中已可見部份自動駕駛車的身影,諸如自動路邊停車系統、先進輔助駕駛系統、自動緊急煞車系統等等。   互聯車輛科技允許車輛之間的互相溝通以及更廣泛聯網,目前已有的互聯車輛科技如動態導航系統、緊急求救系統(eCall)等,特別是歐盟欲規範未來新車都必備eCall系統,該系統可偵測事故發生並自動開啟安全氣囊、撥打求救電話並開啟全球定位系統(GPS),以利醫護人員快速救援。目前有三種正在發展中,用以支援互聯車輛的科技:V2V(車輛之間互聯)、V2I(車輛與交通設備互聯)、V2X(車輛與任何適當的科技互聯)。而發展CAV有六種益處,包括提升行車安全、減少交通阻塞、減少碳排放、更多自由時間可運用、任何人都可平等地使用CAV以及改良道路之設計。   我國刻正實施行政院於2014年5月核定之第2階段「智慧電動車輛發展策略與行動方案」,推動智慧電動車整車及零組件性能提升,協助廠商提升製程及資訊應用功能;研析國際驗證及測試規範,完善智慧電動車產業價值鏈。

中國大陸專利局於2014年7月21日簽署「知識產權保險戰略合作協議」,落實創新驅動發展戰略

  中國大陸專利局與中國人民財產保險股份有限公司於2014年7月21日在北京簽署「知識產權保險戰略合作協議」,雙方將合作促進專利保險之發展。所謂專利保險係指在專利研發、專利申請、實施、讓與、使用或專利訴訟中,由於發生專利侵權的行為而提供的保險服務。然而,此次協議更包括專利保險政策擬定與政策環境營造、承保理賠流程之改善,並且試圖強化專利風險的宣導以提升企業管理專利風險的意識,最終目標是建立專利保險風險控制及分散機制。   相對於我國高科技產業於引進專利保險在分散專利風險上有正面的參考價值,但由於現行客觀環境下的條件較不完備,使得我國在推行專利保險上窒礙難行,主要原因在於法律制度的不同所產生的專利風險程度有異、無法準確計算保險標的鑑價制度等,但專利保險的概念早在1994年美國即已推出,又伴隨智慧財產權意識的高漲,各國也相繼推行,例如:英國推出的「專利申請保險」,以及日本推出的「知識產權授權金保險」等。因此,此次中國大陸亦擴大推行專利保險之政策,可謂與國際發展趨勢與整體智財法制建制有關,可供我國未來引進專利保險制度上試行之參考與討論。

WIPO馬拉喀什條約

  《馬拉喀什條約》全名為《關於為盲人、視力障礙者或其他印刷品閱讀障礙者獲得已出版作品提供便利的馬拉喀什條約》(Marrakesh Treaty to Facilitate Access to Published Works for Persons Who Are Blind, Visually Impaired or Otherwise Print Disabled),2013年由世界智慧財產權組織(WIPO)通過,並於2016年9月30日生效。《馬拉喀什條約》目標是在保護智慧財產權的同時,亦能擴大視覺障礙者資訊及資源獲取的管道,允許盲人及視障者得複製已出版作品、簡化無障礙文本的印刷流通與授權,增加視障者閱讀機會。條約並要求締約方必須在國內法中明文對著作權人權利的例外與限制規定,允許被授權實體(例如為視力及閱讀障礙者服務的非營利性組織),製作圖書的無障礙格式版本,包括點字文本、大字本、數位化音訊等,並允許跨國境交換,均無須請求著作權人授權。   美國是目前擁有最多無障礙格式英文文本的國家。2019年1月28日,美國總統批准《馬拉喀什條約》後,美國成為了該條約的第50個締約國。條約在美國國內實施後,居住在條約締約國的視力障礙者將能立即獲得約550,000份無障礙文本。

全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任

全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。

TOP