英國成立英國衛生與社會照護資訊中心整合政府醫療資訊

  隨著英國國家健康服務(National Health Service, NHS)的改革,衛生和社會照護法(The Health and Social Care Act 2012)第九部分第二章,規範成立英國衛生與社會照護資訊中心(The Health and Social Care Information Centre, HSCIC)作為政府醫療資訊公開、整合與管理單位,此項規定於今(2013)年4月1日生效。

 

  HSCIC並非正式的政府部會,而屬於執行行政法人(Executive Non Departmental Public Bodies),向衛生部長(Secretary of State for Health)負責,其職責除了蒐集、分析和傳播國家資料暨統計資訊以外,同時亦進行國家各層級的醫療資訊基礎設施的整合,作為醫療資訊數據公開的門戶;此外,HSCIC利用其行政法人的特性,將醫療組織視為客戶,提供不同的服務和產品,以協助其達到所需的資訊管理需求。透過HSCIS對於資訊的整合再公開,有助於在增進政府資訊透明性的同時,亦保障了資訊流動的效率和安全性。

 

  其中HSCIC對於敏感性資料之應用,特別設立資料近用諮詢小組(Data Access Advisory Group, DAAG)予以處理。資料諮詢小組是每月定期由HSCIC所主持的獨立運作團體,須向HSCIC委員會負責。當HSCIC面臨敏感性資料或可識別個人資料之應用(包括是為了研究目的,和為了促進病人的醫療照護所需之應用)時,即交由資料近用諮詢小組會議來討論,以確保揭露該項資訊的風險降到最低。

 

  從HSCIC的組織任務能輕易地發現其具有強大整合醫療資訊之功能,其未來發展勢必與過往飽受爭議的醫療資訊應用息息相關,因此相當值得我們持續觀察HSCIC的後續動態。

相關連結
相關附件
※ 英國成立英國衛生與社會照護資訊中心整合政府醫療資訊, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=67&tp=1&d=6062 (最後瀏覽日:2024/12/09)
引註此篇文章
你可能還會想看
ZeniMax控Oculus Rift VR竊取技術經陪審團判決應賠償美金5億元

  電子遊戲龍頭ZeniMax於2014年起訴虛擬實境公司Oculus VR,稱Oculus創辦人Palmer Luckey為改善初代虛擬實境體驗機「Rift」提供原型予在ZeniMax任職的John Carmack,嗣Carmack在該機器增加ZeniMax所有之虛擬實境專用關鍵軟體,ZeniMax就Luckey取得該公司軟體之內容與Luckey簽立保密協定。其後Luckey為募集Oculus資金,未經ZeniMax授權及參與,開始展示含有ZeniMax專有軟體之「Rift」,最後Facebook收購Oculus。   ZeniMax以Oculus、Luckey、Brendan Iribe(Oculus另一創辦人)、Carmack為被告,主張其等盜用營業秘密、侵害著作權、違反保密協定、不公平競爭、不當得利、商標侵權(包括未經許可使用以及錯誤指示商品來源),並列Facebook為共同被告主張其於收購Oculus即知情,連帶給付20億美元之損害賠償及40億美元之懲罰性賠償。本訴訟於2017年2月1日經陪審團認定Oculus違反保密協定、侵害著作權、錯誤指示商品來源侵害商標等共計賠償3億美元,Luckey及Iribe因錯誤指示侵害商標共計賠償2億美元。   以本案來看,Oculus及其創辦人最主要是未經ZeniMax同意而公開使用ZeniMax的程式碼且宣稱為其公司產出,關於這個部分公司未來在有運用他人公司技術之情形宜透過協商,以共同發表之方式避免侵害創作公司之權利;另創作公司雖未公開技術,然可透過保密協定使營業秘密獲得完善的保障;至於Facebook的部分更凸顯公司於併購前尤應強化盡職查核(Due Diligence),以免訟累。 本文同步刊登於TIPS網站(https://www.tips.org.tw)」

中國大陸科技部公布參與2013年度科技型中小企業創業投資引導基金階段參股的創業投資機構名單

  根據中國大陸科學技術部(以下簡稱科技部)、財政部2013年11月8日以國科發計〔2013〕647號公布之<科技部、財政部關於2013年度科技型中小企業創業投資引導基金階段參股項目立項的通知>,確定計有21家創業投資機構參與本年度階段參股之立項項目,計劃資助金額約人民幣8億元。   按「科技型中小企業創業投資引導基金」係中國大陸財政部及科技部為貫徹<國務院實施《國家中長期科學和技術發展規劃綱要(2006至2020年)若干配套政策》>,支持科技型中小企業自主創新,而於2007年7月6日公布<科技型中小企業創業投資引導基金管理暫行辦法>。其中第3條規定:「引導基金的資金來源為,中央財政科技型中小企業創新基金;從所支持的創業投資機構回收和社會捐贈的資金」;第8條第一項前段規定:「本辦法所稱的創業投資企業,是指具有融資和投資功能,主要從事創業投資活動的公司制企業或有限合夥制企業」。   中國大陸政府希冀透過引導基金的協助,鼓勵當地創投業者參與引導基金支持的研發項目,並以「創業投資企業」或「創業投資管理企業」等方式,對於從事科技研發的中小企業提供實質資金協助,其具體鼓勵的方式依前述辦法第5條規定可為階段參股、跟進投資、風險補助等。以本次公布之通知為例,其所稱「階段參股」是指引導基金向創業投資企業進行股權投資,並在約定的期限內退出(參股期限一般不超過5年)。而符合該辦法規定條件的創業投資機構作為發起人,發起設立新的創業投資企業時,可以申請階段參股。   近來我國主管機關為促進經濟發展,不斷思索鼓勵創業、就業之措施,或許從創投面提供實質之協助也是參酌因素之一,其他國家或地區的具體措施及內容似值得我們後續觀察、研究。

OASIS網路標準服務遭抵制

  開放原始碼及自由軟體的大老等發起一封抵制網路服務標準機構OASIS新專利政策的活動,並簽署了一份電子郵件,呼籲社群不要採用由OASIS標準組織所通過的規格。OASIS本月修改了它的專利政策,宣稱為開放原始碼軟體的開發提供了更好的選擇。   這份電子郵件中表示,不要採用OASIS的不開放標準。要求OASIS修改它的政策。如果你是OASIS成員,對於這種窒礙難行,不能用在開放原始碼及自由軟體上的標準,不要參與其工作小組。支持者亦表示,希望類似OASIS這樣的組織能訂出明確政策,好讓所有想採用業界標準的組織可以預先知道未來是否會被收費。   然而,OASIS為自己的政策修改提出辯護,也對這個活動加以反擊。其表示,OASIS這個政策和W3C的政策一樣,都要求必須免權利金才行。且其政策規定,業界標準可以加入專利技術,但必須對外公佈此事才行。而且幾乎在所有的案例裡,這倒頭來都會變成免專利金。   OASIS所修改的政策為標準工作提出了三種模式:RAND(reasonable and nondiscriminatory licensing,合理且統一的授權);RAND條件下的RF(免權利金);或者是有條件下的RF。   對於OASIS的杯葛,反應出產業在IP權利上的利益,以及開放原始碼和自由軟體支持者間的爭執。OASIS的新政策預計要在4月15日生效,原本是要展示對開放原始碼擁護者的妥協。但是,這份電子郵件簽署活動,顯示出新政策依然難已被接受。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP