美國華府行政管理與預算辦公室頒布Open Data政策備忘錄之執行指導綱要

  美國華府行政管理與預算辦公室(Office of Management and Budget)頒布執行M-13-13 Open Data政策備忘錄之指導綱要(Supplemental Guidance on the Implementation of M-13-13 “Open Data Policy-Managing Information as an Asset”),目的在於澄清問題及提供執行細節以協助政府部門實施執行命令第13642號及M-13-13 Open Data政策備忘錄。透過實踐本指導綱要,各政府部門將能確保用以盤點、管理及開放資料的基礎設施之完備,進而開創因開放資料所產生之價值。

  資料在依據本綱要進行盤點時,主管機關必須一併予以分級,其近用層級(Access Levels),區分為公開(Public)、限閱(Restricted Public)、非公開資料(Non-public)。資料公開前會經過完整之隱私權保護及資訊安全事項檢視,無違反相關法律和政策規範者,始釋出予大眾。

  針對備忘錄之五項執行要求,本指導綱要即分為五項對應指導,介紹如下:

1.建立及維運大型資料盤點目錄:目的在使聯邦政府部門建立清楚且完整之資料資產目錄,而在製作盤點目錄後,必須持續改進、維護資料,並以擴展、豐富、開放三種面向來評估檢視盤點目錄之成熟度。

2.建立及維運公開資料清單:為增進資料查詢之容易度及可用性,各部門須篩選上述資料盤點目錄中屬於公開層級或可以被公開之資料,並建立及發布公開資料清單,作為盤點目錄之子目錄,使民眾得以知悉現有公開資料,及接續地將被公開之資料。各部門基於裁量權,亦可決定是否列入限閱或非公開資料資產,使民眾能知悉該筆資料之存在以及近用該資料之程序。

3.建立用戶參與資料釋出程序:此程序將提供資料用戶參與促進資料釋出及認定釋出之優先順序。由關鍵的資料用戶來幫助聯邦政府認定資料資產價值,而被認定最高價值之資料將優先、快速釋出。

4.當資料無法釋出時,須以文件證明:政府部門必須確認資料經過完整之隱私權保護及資訊安全事項檢視,無違反相關法律和政策規範者,才能公開資料。當認定資料涉及違反上述規範時,則須以文件證明其諮詢該政府部門中所設之法律顧問單位(Office of General Counsel)或同類單位後之決定,再依據三種資料近用資層級予以分類。

5.指導綱要中要求列出各部門應該負責管理資訊之窗口。

  原定11月1日為完備上述基礎設施建置之最後期限,然為因應美國自10月1日起聯邦政府關門,特寬限延期至11月30日;在11月30日後,各部門將於每季報告執行進展,而部門開放資料之績效將被列為跨部門優先追蹤對象。

相關連結
※ 美國華府行政管理與預算辦公室頒布Open Data政策備忘錄之執行指導綱要, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=67&tp=1&d=6388 (最後瀏覽日:2025/04/26)
引註此篇文章
你可能還會想看
「你在哪裡? 我正在看著你!! 談行動定位服務與隱私權保護」

智慧財產權管理標準之建立-由管理系統標準談起(上)

FDA發佈人工智慧/機器學習行動計畫

  美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。   2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。   根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。

開原碼授權 印度要走自己的路

  印度理工學院的 Deepak Phatak 啟動了一項建立 Knowledge Public License (知識公共授權,簡稱 "KPL" )的計畫,這種授權計畫允許程式人員跟他人分享自己的點子,但是同時保留軟體的修改權。它很像柏克萊軟體發行計畫或 MIT 授權計畫。目的是希望為建立一種環境,開發者既可以借助開放原始碼的合作力量,又能保護個人的利益。這項計畫還有助於舒緩開原碼運動和專屬軟體商之間日趨緊張的關係。    Phatak 的授權計畫有著先天的數量優勢。由於委外的興起和繁榮,印度已經成長為一個重要的軟體發展中心。 Phatak 也發起了一項 Ekalavya 計畫,鼓勵大家提出開原碼運動的新概念。

TOP