何謂德國電信媒體法中的「妨害人責任」(Störerhaftung)?

  原德國電信媒體法第八條條文中所指的「網路服務提供者」為擁有獨自或其他電信媒體及提供接取網路服務的自然人或法人,與我國著作權法中所提及「網路服務提供者」(Internet Service Provider)之適用對象範圍略有不同,而德國民法中有個特殊連坐法-「妨害人責任」(Störerhaftung),所有人對於妨害所有權之人,有排除及不作為請求權,因此,在原德國電信媒體法未規定之特定情形下,「網路服務提供者」應對他人透過其網路所從事的任何侵權違法行為負責。

  這項法律使得德國許多咖啡館、公共空間、飯店大廳不願提供免費無線網絡,同時又讓大型咖啡連鎖店如星巴克,以提供免費網絡服務吸引顧客,因為他們就算被捲入網絡侵權責任的訴訟,也不怕支付高額律師費用,小型咖啡館就無法承擔這個風險,只能無奈面對客人轉向大型咖啡連鎖店消費的困境。根據原德國電信媒體法規定,咖啡館業主和其他網路熱點設立者所提供網路服務的方式將可能收到律師的警告函,告知他們不得再為非法下載者提供網路接取服務。

  德國聯邦議院(Deutscher Bundestag)於2016年6月初經過激烈的辯論後,通過電信媒體法(Telemediengesetz; TMG)修正草案,將在最新的電信媒體法中免除「網路服務提供者」之「妨害人責任」(Störerhaftung),使德國的免費無線網絡連接點可以增加並走向開放。

本文為「經濟部產業技術司科技專案成果」

※ 何謂德國電信媒體法中的「妨害人責任」(Störerhaftung)? , 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=67&tp=1&d=7596 (最後瀏覽日:2024/05/24)
引註此篇文章
你可能還會想看
美國聯邦交易委員會提出巨量資料報告,關注商業應用之潛在歧視性效果

  美國聯邦交易委員會(Federal Trade Commission, FTC)於2016年1月6日公布「巨量資料之商業應用」報告(Big Data: A Tool for Inclusion or Exclusion? Understanding the Issues),報告中歸納提出可供企業進一步思考之數項議題,期能藉此有助於企業確保巨量資料分析應用之正當合法性,並避免產生排除性或歧視性之對待,但同時亦能透過巨量資料之分析應用為消費者帶來最大的利益。FTC主委Edith Ramirez表示,巨量資料之重要性於商業之各領域均愈發凸顯,其對於消費者之潛在利益自是不言可喻,然企業仍應確保巨量資料之利用不會產生傷害消費者之結果。   「巨量資料之商業應用」報告經徵集公共意見與彙整相關研究後,聚焦於巨量資料生命週期的後端,亦即巨量資料被蒐集與分析之後的利用。報告中強調數種能幫助弱勢群體的巨量資料創新利用方式,例如依病患之生理特性量身訂作並提供醫療照護,或是新的消費者信用評等方式。報告同時也指出可能因為偏見或資料錯誤帶來的風險,像是信用卡發卡銀行降低某人信用額度的原因並非基於該持卡人之消費與還款記錄,而是與該持卡人被歸為「同一類型」之消費者所共同擁有之記錄與特徵。其次,報告對巨量資料於商業領域之利用可能涉及之法規進行了初步盤點,包括公平信用報告法(Fair Credit Reporting Act, FCRA)、與機會平等相關之聯邦立法—像是基因資訊平等法(Genetic Information Nondiscrimination Act, GINA)、以及聯邦交易委員會法,報告也列出7項預擬提問,協助企業因應巨量資料商業利用之法令遵循問題。

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

日本空中工業革命新進展:無人機變身空中郵差

  日本政府曾於2017年6月9日閣議公布之《未來投資戰略2017》(未来投資戦略2017),以及5月19日「小型無人飛行載具相關部會連絡會議」(小型無人機に関する関係府省庁連絡会議)公布之《空中工業革命時程表》(空の産業革命に向けたロートマッフ)中,提出「2018年運用於山間地區運送貨物、2020年可正式在都市內安全運送貨物」之目標。故國土交通省與經濟產業省於同年10月4日共同設立「無人飛行載具於目視範圍外及第三者上空等飛行檢討會」(無人航空機の目視外及び第三者上空等での飛行に関する検討会),並於2018年9月18日公布《無人飛行載具運送貨物自主指引》(無人航空機による荷物配送を行う際の自主ガイドライン,以下稱「本指引」)。本指引目的係制定安全運輸貨物所應遵守事項、提高社會對無人機運送貨物之信賴,以求提升運輸效率、節省人力成本。適用對象為非屬航空法第132條規定須申請許可之空域,但於目視範圍外飛行並運送貨物之無人機。   本指引公布後,國土交通省與環境省於相關提案中選出5個人口非密集區,以進行之無人機運輸貨物(ドローン物流)實驗。首先,在2018年10月22日長野縣白馬村,無人機自海拔1500公尺處運送最重達8公斤的食品至海拔1850公尺處的山莊,單程耗時6分鐘,共往返3次,皆無發生明顯失誤。日本郵政之提案則在同年11月7日,從福島縣小高郵局成功運抵位於南方約9公里處的浪江郵局,耗時16分鐘。本次實驗係首次成功於目視範圍外運輸物品,實驗途中均未設置監看人員,僅以電腦掌握兩地衛星定位資訊,並監看無人機上搭載相機傳回的畫面。日本郵政計畫未來1年內,每個月將有6天以無人機運送2公斤內的傳單等物品。國土交通省與環境省計畫於年底前完成另外3個地區的實驗,並統整結果驗證是否能解決山間等人口非密集區,因貨物乘載率低而運輸效率低落,以及降低排碳量等課題。

澳洲及紐西蘭公路監理機關聯合會發布輔助與自動車輛駕駛之教育與訓練研究報告

  澳洲及紐西蘭公路監理機關聯合會(Austroads)於2020年3月18日發布「輔助駕駛及自動駕駛車輛之駕駛人教育及訓練報告(Education and Training for Drivers of Assisted and Automated Vehicles)」,該報告目的在於研究有哪些技巧、知識與行為,為目前與未來人們使用具有輔助或自駕功能車輛所需具備的;並檢視註冊與發照之相關機關應擔任何種角色,以確保駕照申請人具有足夠能力以使用相關科技。報告中所關注之輔助與自駕車輛,為具有SAE自動駕駛層級第0至第3級之輕型或重型自駕車輛;目前澳洲道路規範並未禁止第3級之自駕車使用,但駕駛人仍應保持對車輛之控制且不得同時進行其他行為。   報告認為目前之駕駛執照發照架構尚不需改變,但註冊與發照機構仍可於輔助與自動駕駛車輛的學習與評估中扮演一些角色,包含: 鼓勵經銷商、製造商與相關利益團體進行有關如何安全運用相關系統,同時避免過度依賴之教育與訓練。 支持將自駕車技術相關之特定重要資訊整合進所有層級之教育與訓練中,但不使用強制性之評估程序進行能力評估。 應關注如何於澳洲設計規範(Australian Design Rules, ADRs)或澳洲新車評估計畫(Australasian New Car Assessment Program, ANCAP)中規範特定車輛之安全公眾教育、整合重要資訊於既有的知識與技術訓練,以及建立強制之學習計畫。   未來澳洲及紐西蘭公路監理機關聯合會將繼續發展相關計畫以實施本報告中之相關建議,以使教育訓練系統更加完善。

TOP