《演算法問責法案》(Algorithmic Accountability Act)於2022年4月由美國參議院提出,此法案係以2019年版本為基礎,對演算法(algorithm)之專業性與細節性事項建立更完善之規範。法案以提升自動化決策系統(automated decision systems, ADS)之透明度與公平性為目的,授權聯邦貿易委員會(Federal Trade Commission, FTC)制定法規,並要求其管轄範圍內之公司,須就對消費者生活產生重大影響之自動化決策系統進行影響評估,公司亦須將評估結果做成摘要報告。
《演算法問責法案》之規範主體包括:(1)公司連續三年平均營業額達5000萬美元,或股權價值超過2.5億美元者,並處理或控制之個人資料超過100萬人次;以及(2)公司過去三年內,財務規模至少為前者之十分之一,且部署演算法開發以供前者實施或使用者。ADS影響評估應檢視之內容包括:
1.對決策過程進行描述,比較分析其利益、需求與預期用途;
2.識別並描述與利害關係人之協商及其建議;
3.對隱私風險和加強措施,進行持續性測試與評估;
4.記錄方法、指標、合適資料集以及成功執行之條件;
5.對執行測試和部署條件,進行持續性測試與評估(含不同群體);
6.對代理商提供風險和實踐方式之支援與培訓;
7.評估限制使用自動化決策系統之必要性,並納入產品或其使用條款;
8.維護用於開發、測試、維護自動化決策系統之資料集和其他資訊之紀錄;
9.自透明度的角度評估消費者之權利;
10.以結構化方式識別可能的不利影響,並評估緩解策略;
11.描述開發、測試和部署過程之紀錄;
12.確定得以改進自動化決策系統之能力、工具、標準、資料集,或其他必要或有益的資源;
13.無法遵守上述任一項要求者,應附理由說明之;
14.執行並記錄其他FTC 認為合適的研究和評估。
當公司違反《演算法問責法案》及其相關法規有不正當或欺騙性行為或做法時,將被視為違反《聯邦貿易委員會法》(Federal Trade Commission Act)規定之不公平或欺騙性行為,FTC應依《聯邦貿易委員會法》之規定予以處罰。此法案就使用ADS之企業應進行之影響評估訂有基礎框架,或可作為我國演算法治理與人工智慧應用相關法制或政策措施之參酌對象,值得持續追蹤。
一家擁有美國網路上國際貿易相關專利的小公司起訴個人電腦巨頭戴爾公司(Dell Inc., DELL)侵權。這家名為DE Technologies Inc.的公司向一家美國聯邦地區法院提起了上述訴訟。DE Technologies的專利於1996年申請,並於2002年被授予。該公司首席執行長Ed Pool表示,他們的最終目的是將其專利授權給跨國公司並收取這些公司網路上貿易額的一小部分作為特許費。但這些費用全部累積起來可能高達數十億美元。 戴爾是首家遭DE起訴的公司。戴爾對上述訴訟未予置評。截至今年1月30日的財政年度,戴爾414億美元的銷售額中有36%來自美國以外地區,該公司向個人及小型企業的銷售中,大部分是通過網路進行的。 DE Technologies擁有的是一個商業模式專利。此類專利涉及的是流程及方法,而不是構造或化學成份。美國上訴法院於1998年判決擁有此類專利是合法的以後,許多公司開始申請此類專利。但批評人士認為許多商業模式不應被授予專利,專利應被授予那些新穎及非顯而易見的發明。
人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要 美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。 本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明 2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。 根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。 雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。 CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據 後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。 由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。 另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析 《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。 然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法? 根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度? 指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分? FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語 隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。 然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017) https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)
歐盟資料保護工作小組修正通過個人資料侵害通報指引歐盟資料保護工作小組修正通過「個人資料侵害通報指引」 資訊工業策進會科技法律研究所 法律研究員 李哲明 2018年3月31日 壹、事件摘要 因應歐盟「通用資料保護規則」(The General Data Protection Regulation,或有譯為一般資料保護規則,下簡稱GDPR)執法即將上路,針對個人資料侵害之通報義務,歐盟資料保護工作小組(Article 29 Data Protection Working Party, WP29)特於本(2018)年2月6日修正通過「個人資料侵害通報指引」(Guidelines on Personal data breach notification under Regulation 2016/679),其中就GDPR所規範個資侵害之定義、對監管機關之通報、與個資當事人之溝通、風險及高風險評估、當責與紀錄保存及其他法律文件所規定之通報義務等,均設有詳盡說明與事例。 貳、重點說明 一、何謂個資侵害?個資侵害區分為哪些種類? 依據GDPR第4條(12)之定義,個資侵害係指:「個人資料因安全性之侵害所導致意外或非法之毀損、喪失、修改、未經授權之揭露、存取、個資傳輸、儲存或其他處理。」舉例來說,個人資料之喪失包括含有控制者(controller)顧客資料庫的備份設備之遺失或遭竊取。另一例子則為整份個資的唯一檔案遭勒索軟體加密,或經控制者加密,但其金鑰已滅失。依據資訊安全三原則,個資侵害之種類區分為: 機密性侵害(Confidentiality breach):未經授權、意外揭露或獲取個人資料。 完整性侵害(Integrity breach):未經授權或意外竄改個人資料。 可用性侵害(Availability breach):在意外或未經授權之情況下,遺失個人資料存取權限或資料遭銷燬。 二、何時應為通知? 按GDPR第33條(1)之規定,當個資侵害發生時,在如果可行之情況下,控制者應即時(不得無故拖延)於知悉侵害時起72小時內,依第55條之規定,將個資侵害情事通報監管機關。但個資侵害不會對自然人之權利和自由造成風險者,不在此限。倘未能於72小時內通報監管機關者,應敘明遲延之事由。 三、控制者「知悉」時點之判斷標準為何? 歐盟資料保護工作小組認為,當控制者對發生導致個人資料侵害的安全事件達「合理確信的程度」(reasonable degree of certainty)時,即應視為其已知悉。以具體事例而言,下列情況均屬所謂「知悉」: 在未加密個人資料的情況下遺失USB密鑰(USB Key),通常無法確定是否有未經授權者將獲致存取資料權限。即使控制者可能無法確定是否發生機密性侵害情事,惟仍應為通知,因發生可用性侵害之情事,且已達合理確信的程度。 故應以控制者意識到該密鑰遺失時起為其「知悉」時點。 第三人通知控制者其意外地收到控制者的客戶個人資料,並提供該揭露係未經授權之證據。當侵害保密性之明確證據提交控制者時,即為其「知悉」時點。如:誤寄之電子郵件,經非原定收件人通知寄件者之情形。 當控制者檢測到其網路恐遭入侵,並針對其系統進行檢測以確認個人資料是否遭洩漏,嗣後復經證實情況屬實,此際即屬「知悉」。 網路犯罪者在駭入系統後,聯繫控制者以索要贖金。在這種情況下,控制者經檢測系統並確認受攻擊後,亦屬「知悉」。 值得注意的是,在經個人、媒體組織、其他來源或控制者自我檢測後,控制者或將進行短暫調查,以確定是否發生侵害之事實。於此調查期間內所發現之最新侵害情況,控制者將不會被視為「知悉」。然而,控制者應儘速展開初步調查,以形成是否發生侵害事故之合理確信,隨後可另進行更詳盡之調查。 四、共同(聯合)控制者之義務及其責任分配原則 GDPR第26條針對共同控制者及其如何確定各自之法遵義務,設有相關規定,包括決定由哪一方負責遵循第33條(對主管機關通報)與第34條(對當事人通知)之義務。歐盟資料保護工作小組建議透過共同控制者間之契約協議,約明哪一方係居主要地位者,或須負責盡到個資侵害時,GDPR所定之通知義務,並載於契約條款中。 五、通報監管機關與提供資訊義務 當控制者通報監管機關個資侵害情事時,至少應包括下列事項 (GDPR第33條(3)參照): 敘述個人資料侵害之性質,包括但不限於所涉之相關個資當事人、個資紀錄及其類別、數量。 傳達資料保護長(DPO)或其他聯絡人之姓名與聯絡方式,俾利獲得進一步資訊。 說明個資侵害可能之後果。 描述控制者為解決個資侵害業已採取或擬採行之措施,在適當情況下,酌情採取措施以減輕可能產生之不利影響。 以上乃GDPR要求通報監管機關之最基本事項,在必要時,控制者仍應盡力提供其他細節。舉例而言,控制者如認為其處理者係個資侵害事件之根因(root cause),此時通報並指明對象即可警示委託同一處理者之其他控制者。 六、分階段通知 鑒於個資事故之性質不一,控制者通常需進一步調查始能確定全部相關事實,GDPR第33條(4)爰設有得分階段通知(notification in phases)之規定。凡於通報時,無法同時提供之資訊,得分階段提供之。但不得有不必要之遲延。同理,在首次通報後之後續調查中,如發現該事件業已受到控制且並未實際發生個資侵害情事,控制者可向監管機關為更新。 七、免通報事由 依據GDPR第33(1)條規定,個資侵害不會對自然人之權利和自由造成風險者,毋庸向監管機關通報。如:該遭洩露之個人資料業經公開使用,故並未對個人資料當事人構成可能的風險。 必須強調的是,在某些情形下,未為通報亦可能代表既有安全維護措施之缺乏或不足。此時監管機關將可能同時針對未為通報(監管機關)或通知(當事人),以及安全維護措施之缺乏或不足,以違反第33條或(及)34條與第32條等獨立義務規定為由,而依第83條4(a)之規定,併予裁罰。 參、事件評析 一、我國企業於歐盟設有分支機構或據點者,宜指派專人負責法遵事宜 揆諸GDPR前揭規定,當個資侵害發生時,控制者應即時且不得無故拖延於知悉時起72小時內,將個資侵害情事通報監管機關。未能履踐義務者,將面臨最高達該企業前一會計年度全球營業額之2%或1千萬歐元,取其較高者之裁罰。我國無論金融業、航運業、航空運輸業、電子製造業及進出口貿易業者等,均或有於歐盟成員國境內或歐洲經濟區(European Economic Area)當地設立子公司或營業據點。因此,在GDPR法遵衝擊的倒數時刻,指派具瞭解GDPR規定、當地個資隱私法遵規範、擅長與隱私執法機構溝通及充要語言能力者專責法遵業務實刻不容緩。蓋此舉可避免我國企業母公司鞭長莫及,未能及時處置而致罹法典之憾。 二、全面檢視個資業務流程,完備個資盤點與風險評鑑作業,掌握企業法遵現況 企業應全面檢視業務流程,先自重要核心業務中析出個資作業流,搭配全面個資盤點,並利用盤點結果進行風險評鑑,再針對其結果就不同等級之風險採行相對應之管控措施。此外,於全業務流程中,亦宜採行最小化蒐集原則,避免蒐集過多不必要之個人資料,尤其是GDPR所定義之敏感個資(如:種族、民族血統、政治觀點、宗教信仰、哲學信仰、工會會員資格等個人資料,及遺傳資料的處理,用於識別特定自然人之生物識別資料、健康資料、性生活、性取向等)或犯罪前科資料,俾降低個人資料蒐集、處理、利用、檔案保存及銷燬之全生命週期流程中的風險。此舉亦契合我國個人資料保護法第5條所揭櫫之原則。 三、立法要求一定規模以上之企業須通過個資隱私法遵第三方認(驗)證,並建置認證資訊公開平台 鑒於國際法遵衝擊以及隱私保護要求之標準線日漸提升,我國企業除自主導入、建置並維運相關個資保護與管理制度以資因應,更有賴政府透過法令(如:修正個人資料保護法)強制要求一定規模以上之企業通過第三方專業驗證,俾消弭風險於日常準備之中。蓋我國具一定規模以上企業,無論其係屬何種業別,一旦違反國際法遵要求,遭致鉅額裁罰,其影響結果將不僅止於單一企業,更將嚴重衝擊該產業乃至於國家整體經貿發展。職是,採法律強制要求企業定期接受獨立、公正及專業第三方認(驗)證,咸有其實益性與必要性。
美國國防授權法案擴大告發者保護範圍透過外部監督有效遏止不法行為自2013年7月1日起,2013年國防授權法(2013 National Defense Authorization Act,NDAA)新規定生效,使得聯邦政府採購案件對告發不法行為者(whistleblower)的保護,由承包商的雇員擴及於分包商的雇員,在此之前,如果分包商的員工向政府直接告發不法行為時,絲毫沒有法律可以用於對抗雇主可能採取的報復措施。 2013 NDAA業於1月份經美國總統簽署,期中除新增對於分包商雇員保護外,該法案也擴張了主包商員工的保護範圍。新法之下,主包商員工如向其公司內部之主管告發不法行為,一樣可以受到法律對告發者的保護,強化了現行法下只有直接對政府申訴者始能得到法律保護。 根據2013 NDAA第828節之規定,承包商、分包商之雇員,都不能被解雇、降級或其他歧視行為以作為揭發行為之報復。當這些雇員合理認為有關於聯邦契約的管理不善、聯邦經費的浪費、或濫用聯邦契約授與之權力等行為,而可能造成潛在的或特定的對公共健康或安全之危害時,或違反聯邦契約行為有關法律或法規時,而向國會議員、稽查總長、政府課責辦公室(The Government Accountability Office)、聯邦契約管理人員、司法部人員、法院或陪審團、承包商或次包商負責調查不法之人員等提供資訊時。法規也明訂,條文中所謂報復,包括該等人員即使是受到行政機關人員在法定權限內的的正式要求而提供資訊時亦然。