德國聯邦網路局(BNetzA)於2019年3月7日公布電信網路營運安全發展需求目錄關鍵要點。該要點係德國聯邦網路局電信通訊法第109條第6項規定,與聯邦資訊安全局(BSI)和德國聯邦資料保護與資訊自由委員會(BfDI)達成協議後制定,並由德國聯邦網路局發布之。此尤其適用於在德國發展5G網路,因該技術係為未來核心關鍵基礎設施,為確保技術發展之安全性,電信網路公司必須滿足相關安全要求。鑑於5G對未來競爭力極具重要性,故用於構建5G之技術必須符合最高安全標準,且應盡可能排除安全問題,該標準同樣適用於所使用的硬體和軟體。附加的安全目錄要點基本內容如下:
(1)系統僅允許從嚴格遵守國家安全法規及電信保密和隱私法規,且值得信賴之供應商處獲得。
(2)必須定期且持續監控網路流量異常情況,如有疑問,應採取適當的保護措施。
(3)僅可使用經聯邦資訊安全局對其IT安全性檢查核可且取得認證之安全相關的網路和系統組件(以下簡稱關鍵核心組件)。關鍵核心組件僅能從獲得信賴保證之供應商/製造商中取得。
(4)安全相關的關鍵核心組)應在交付期間進行適當之驗收測試後方能使用,且須定期和持續進行安全檢查。關鍵核心組件之定義將由德國聯邦網路局和聯邦資訊安全局共同協議訂定。
(5)在安全相關領域,只能聘用經過培訓之專業人員。
(6)電信網路營運商須證明所使用的產品中,實際使用經測試合格之安全相關組件硬體和供應鏈末端的原始碼。
(7)在規劃和建立網路時,應使用來自不同製造商的網路和系統組件,以避免類似「單一耕作」(Monokulturen),即避免技術生態圈無法均衡發展,以及易受市場波動影響之不良效應。
(8)外包與安全相關勞務時,僅可考慮有能力,可靠且值得信賴的承包商。
(9)對於關鍵且與安全相關的關鍵核心組件,必須提供足夠的冗餘(Redundanzen)。
鑑於德國於3月中旬已拍賣5G頻譜,聯邦政府將大力推廣附加要求,並讓相關企業可以清楚了解進一步計畫。為確保立法層面之具體要求,聯邦政府計畫將對電信法第109條作重大修訂。明確規定操作人員必須證明符合安全規範,並由法律規範相關認證義務。針對關鍵基礎設施中使用的關鍵核心組件應來自可信賴之供應商/製造商,應適用於整體供應鏈。此外,德國聯邦政府擬針對聯邦資訊安全局法進行修訂,包括關鍵基礎設施、其組件可信賴性之相關規範。依聯邦資訊安全局法第9條規定,將在認證框架內提供可信賴性證明。
本文為「經濟部產業技術司科技專案成果」
身為世上最大基因改良( GMO)棉花生產者的 中國大陸 ,已經批准將經過基因改良的混種棉花進行商業化,預料可以解決生活日用品上的短缺。相對於此, 歐盟 的農業部長們,卻對於是否批准編號1507的基因改良玉米,陷入一個進退維谷的困境。但是經過8年激烈的反對, 丹麥 卻允許基因改良玉米的進口。 而在 美國 有 85﹪的大豆,76﹪的棉花,45﹪的小麥是經過基因改良的。至於 澳洲 農業與資源經濟局則最近則對基因改良作物做出一份報告,認為各省禁止基因改良食品會減小經濟效益,使 澳洲 面對世界各地日益增多的基因改良作物發展,屈居弱勢。至終可能會在十年後造成1.5億到6億澳幣的損失。
奧克蘭市(Oakland)成為美國第三個禁止公部門使用人臉辨識技術的城市近年來,人臉辨識(Face recognition)技術迅速發展,增加便利性的同時,也伴隨了種種隱憂,如:對隱私權的侵害、公部門權力濫用等,是以加州舊金山市(San Francisco)和麻薩諸塞州薩默維爾市(Somerville)分別在今年(2019)5月和6月發布公部門使用人臉辨識技術的相關禁令,加州奧克蘭市(Oakland)並於7月16日跟進,成為美國第三個禁止公部門使用人臉辨識技術的城市。 2018年麻省理工學院曾針對人臉辨識技術的正確率做過研究,其研究結果報告顯示黑人女性辨識錯誤率超過30%,遠不如白人男性;美國公民自由聯盟(American Civil Liberties Union, ACLU)也針對Amazon人臉辨識軟體Rekognition做過測驗,結果該系統竟誤將28名美國國會議員顯示為嫌疑犯,這兩項研究顯示,人臉辨識技術存有極高錯誤率且對種族間存有很大的偏見與歧視。對此奧克蘭市議會主席卡普蘭(Rebecca Kaplan)一項聲明中表示:「當多項研究都指出一項新興技術具有缺陷,且造成寒蟬效應的時候,我們必須站出來」。 卡普蘭並表示:「建立社區和警察間信任與良好關係以及導正種族偏見是很重要的,人臉辨識技術卻反而加深此問題」、「對於隱私權和平等權的保護是最基本的」,故奧克蘭市通過禁止公部門使用人臉辨識技術的法令,原因如下: 人臉辨識系統所依賴的資料集,具高度不準確性。 對於人臉辨識技術的使用與共享,尚缺乏標準。 這項技術本身具有侵犯性,如:侵犯個人隱私權。 政府如果濫用該技術所得之資訊,可導致對弱勢族群的迫害。 雖然目前美國僅有三個城市通過政府機關禁止使用人臉辨識技術的法令,但依照目前的發展狀態,其他的城市甚至州在未來也可能會跟進頒布禁令。
「挑戰智慧美國」(the Smart America Challenge) 計畫美國聯邦政府於2013年12月啟動「挑戰智慧美國」(the SmartAmerica Challenge)計畫,目標是匯集產官學研以呈現網實整合系統(Cyber-Physical System, CPS)與智慧聯網如何能夠創造就業機會、新的商業機會、以及為美國帶來社經上之利益。2014年6月,24個技術團隊及超過100個組織機構共同於華府進行智慧聯網應用展示,藉此展現智慧聯網如何促進運輸、緊急服務、健康照護、安全、節能、以及製造。於整合性之解決套案上,「挑戰智慧美國」計畫選定加州的聖荷西市(The City of San Jose),由聖荷西市政府與Intel公司共同建立「智慧聯網智慧城市示範平台」(IoT Smart City Demonstration Platform)。研究團隊於城市各處廣泛裝置感測器,蒐集空氣品質、噪音、交通流量、能源效率等相關資料,藉此試驗城市如何利用智慧聯網技術來改善在地市民的整體生活。在我國,2014年則可稱為智慧城市發展元年,經濟部技術處與工業局等中央政府機關與新北市、桃園縣、新竹市、台中市等地方政府皆相繼投入並推動智慧城市計畫。搭配軟硬體之技術整合與相關產業之參與、以及法人與學術機構之投入,我國透過智慧聯網與網實整合系統以發展智慧城市之未來值得期待。
歐盟個資保護委員會公布GDPR裁罰金額計算指引歐盟個人資料保護委員會 (European Data Protection Board, EDPB)在徵詢公眾意見後,於今(2023)年5月24日通過了「歐盟一般資料保護規則行政裁罰計算指引04/2022」(Guidelines 04/2022 on the calculation of administrative fines under the GDPR)。此一指引,旨在協調各國資料保護主管機關(Data Protection Authorities, DPAs)計算行政罰鍰的方法,以及建立計算《歐盟一般資料保護規則》(General Data Protection Regulation, GDPR )裁罰金額的「起點」(Starting Point)。 時值我國於今(2023)年5月29日甫通過《個人資料保護法》之修法,將違反安全措施義務的行為提高裁罰數額至最高1500萬,金額之提高更需要一個明確且透明的定裁罰基準,因此該指引所揭露的裁罰計算步驟值得我國參考。指引分為五個步驟,說明如下: 1.確定案件中違反GDPR行為的行為數以及各行為最高的裁罰數額。如控管者或處理者以數個行為違反GDPR時,應分別裁罰;而如以一行為因故意或過失違反數GDPR規定者,罰鍰總額不得超過最嚴重違規情事所定之數額(指引第三章)。 2.確定計算裁罰金額的起點。EDPB將違反GDPR行為嚴重程度分為低度、中度與高度三個不同的級別,並界定不同級別的起算金額範圍,個案依照違反GDPR行為嚴重程度決定金額範圍後,尚需考量企業的營業額度以定其確切金額作為裁罰數額起點(指引第四章)。 3.控管者/處理者行為對金額的加重或減輕。評估控管者/處理者過去或現在相關行為的作為加重或減輕的因素而相應調整罰鍰金額(指引第五章)。 4.針對各違反行為,參照GPDR第83條第4項至第6項確定行政裁罰上限。GDPR並沒有對具體的違反行為設定固定的罰款金額,而是對不同違反行為規範了裁罰最高額度上限,EDPB提醒,適用第三步驟或下述第五步驟所增加的額度不能超過GDPR第83條第4至第6項度對不同違反行為所訂的最高額度限制(指引第六章)。 5.有效性、嚇阻性與比例原則的考量。個資保護主管機關應針對具體個案情況量以裁罰,必須分析計算出的最終額度是否有效、是否發揮嚇阻以及是否符合比例原則,而予以相應調整裁罰額度,而如果有客觀證據表明裁罰金額可能危及企業的生存,可以考慮依據成員國法律減輕裁罰金額(指引第七章)。 EDPB重申其將不斷審查這些步驟與方法,其亦提醒上述所有步驟必須牢記,罰鍰並非簡單數學計算,裁罰金額的關鍵因素應取決具體個案實際情況。