美國柏克萊﹙Berkley﹚市議會日前無異議通過既有有害物質法令修正之決議,企圖涵蓋奈米物質之情形,此其為奈米科技地方性立法之首例。此項行動迫使研究人員及製造人必須於研究或生產過程中,申報所使用的奈米材料,以及提出有效管理奈米物質的證明。
在商業世界當中,奈米科技的目標是在原子或分子層次,藉由改變或創造新的成份,以發展出新的產品及材料。不過,這些材料是否會產生環境及健康方面的問題,目前尚不得而知。
此項修正已蘊釀兩年。市府官員表示,此項法規修正主要在於監管奈米新創事業﹙startups﹚或小型企業﹙small business﹚,而非國家型實驗室﹙the national lab﹚所造成的影響,因為後者目前係由美國能源部﹙Department of Energy﹚所管理,地方法規對其並無管理權限。一開始,國家實驗室相當反對柏克萊市的這項計畫;不過,經過溝通其表示未來將繼續支持該市市府的行動。
負責柏克萊市有害物質管理事務的Nabil Al-Hadithy表示,他期許這項新法成為其他城市有效管理奈米物質的榜樣,並希望其他城市能夠將這樣類型的規範,有效運用在全加州的健康及安全法規上。
本文為「經濟部產業技術司科技專案成果」
為執行「數位議程2014-2017」(行動領域3「創意政府」),德國內閣於9月17日分別公布出「數位行政機關 2020」與「八大工業國(G8)開放資料宣言」行動計畫。德國聯邦內政部部長de Maizère指出,此計畫的執行是為了讓公民享有行政機關更佳簡便、人性化、不受時間地點限制的服務,並且顧及到個人資安保障。 「數位行政機關 2020」旨於將德國數位政府(e-Government)法律在聯邦機關體制裏統一執行。在執行的做為中其中特別值得注意的是,以後聯邦形政體系使用的紙本檔案將全面轉換為數位版本。行政業務處理過程也將數位化、聯網化及電子化。此外、政府採購案流程也將數位化。這可幫助行政機關及企業節省行政資源。 為讓此計畫順利的執行,政府資料透明化的提升也變的格外重要。也因此,內政部長de Maizère公布針對「八大工業國(G8)簽署開放資料宣言」推出行動計畫。該計畫將政府機關的行政資料提供出來讓公民參考。依照該計畫,再明2015年4月底前,各聯邦政府機關將需提供兩個數據集(Datensatz),透過德國政府公開資料網路平台Govdata (https://govdata.de/) 公布出來。可公布出來之數據含括警察局統計之犯罪紀錄、政府建設合作案件、社會福利預算到德國國家數位圖書館資料及所有德國聯邦教育與研究部(Bundesministerium für Bildung und Forschung)的公開資料。
經濟部技術處研究機構智慧財產管理制度評鑑與台灣智慧財產管理規範(TIPS)驗證內容比較 美國國家公路交通安全管理局發布自駕車安全性評估相關法規預告美國國家公路交通安全管理局(National Highway Traffic Safety Administration, NHTSA)於2025年1月15日發布「配備自動駕駛系統車輛之安全、透明度及評估計畫」(The ADS-equipped Vehicle Safety, Transparency, and Evaluation Program , AV STEP)法規預告(Notice of proposed rulemaking, NPRM),建立全國性自願評估與監督制度,以提高自駕車安全性之公共透明度,並促進其負責任布建。 根據《國家交通與機動車輛安全法》(National Traffic and Motor Vehicle Safety Act),自駕車在符合〈聯邦機動車輛安全標準〉(Federal Motor Vehicle Safety Standards, FMVSS)及州、地方法律的前提下,得於公共道路上行駛;若無法符合FMVSS之要求,則需進行豁免申請。惟不論採何種途徑,FMVSS皆未針對自駕車之安全性與性能進行評估,因此NHTSA提出AV STEP,為自駕車設計專門之豁免申請途徑,並針對不同自動化程度車輛提出涵蓋車輛設計、開發與運行之安全性審查條件,以對現行FMVSS之豁免規定進行補充。簡要說明如下: (1)需配置駕駛人之自駕車:需具備手動駕駛功能與清晰的交接程序,以於自駕系統失效時透過充分提示與反應時間,使駕駛人接管操作。 (2)完全由自駕系統操作之自駕車:監管著重於各種情況下皆能自主運作、回退(Fallback)機制需具遠端監控能力,且能自動進入最小風險狀態。 除上述要求外,申請者皆須提供第三方機構之獨立評估報告、說明自動駕駛系統故障之應對措施,並持續接受NHTSA監督。
日本對未來2020年至2030年間網路基礎設施之預測日本總務省未來網路基礎設施研究會(将来のネットワークインフラに関する研究会)4月份針對日本人工智慧(Artificial Intelligence 簡稱AI)、物聯網(Internet of Things 簡稱IoT)、資訊及通訊技術(Information and Communication Technologies 簡稱ICT)等技術相對應之網路基礎設施做作出預測。 在2020年以後第五代通信技術(5G)、物聯網系統、高畫質通訊等技術相繼成熟及普及化,相關業者勢必發展出多樣化、高度專業化使用者需求之網路結構,而手機聯網系統從單純的資訊傳遞網路,逐漸變成社會系統之神經網絡(社会システムの神経網)。 物聯網服務目前係由專用終端設備,並根據特定的應用目的建構,但在未來的網絡基礎設施,可能出現如橫向合作應用的通用平台,到2030年左右物聯網服務中M2M(Machine to Machine,機器和機器之間的通訊)的佔有率估計將達到10%。 人工智慧網路技術不僅僅是虛擬化層網路(仮想化レイヤのネットワーク)之維護和操作,更是物理層面的網路(物理レイヤのネットワーク)資源的管理,AI仍然只擔任協助之工具。其中,物理網絡(物理ネットワーク)和邏輯網絡(論理ネットワーク)應分別處理,邏輯網絡將型成多層次化,將變得難以檢測故障和調查原因,但在安全和可靠的網絡基礎設施下,經營者使用AI技術仍然是沒有問題的。 由於雲端技術、通訊技術之提昇,非電信營運者進入網路經營之商業型態逐漸產生,型成網路使用者、資料提供者之多樣性及複雜性。網路流量方面,在2030年左右將超出100Tbps核心網絡所需的傳輸容量,達到以往的光纖的容量限制,將透過無線電接入技術進一步發展,補足不足的光學寬頻。然而,人們對於網路更快的通信速度、安全性及可靠性的功能需求是沒有改變的。