Skype多了測謊功能?

  以色列BATM公司研發出Skype整合性軟體-KishKish,未來將提供消費者以付費的方式使用測謊功能。此軟體係透過分析談話者聲音中的緊張程度,告知軟體使用者「對方是否說謊」。如此一來,使用者便可透過軟體分析出來的指示,而即時修正詢問的問題。據說,美軍已開始運用此套軟體!


  雖然KishKish的使用如此便利,但是根據英國專家表示,網路使用者若不當使用KishKish,將可能違反「資料保護法」(Data Protection Act)而負擔民事責任,甚至還可能涉及「調查權規範法」(Regulation of Investigatory Powers Act,RIPA)將被處以兩年以上有期徒刑或科以罰金。


  至今,Skype仍尚未公布其價格及發布日期。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ Skype多了測謊功能?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=1045&no=64&tp=1 (最後瀏覽日:2025/12/08)
引註此篇文章
你可能還會想看
何謂「專利蟑螂」( Patent Troll)呢?其之主要特徵及對專利制度以及專利市場之影響為何?

  「專利蟑螂」( Patent Troll)由個人或是中小型組織/團體以購買專利的方式來獲得專利權,並藉由專利權排他性特徵,以訴訟方式來控告侵害其專利權的成功商品製造者。   「專利蟑螂」主要特徵有三;(1)主要係藉由專利取得的方式,向潛在或可能的專利侵權者收取費用;(2)此類NPE並不進行任何研發活動,其亦不就其所擁有的專利來從事商品化活動或發展新型技術;(30此類NPE投機性地等待商品製造者在投入不可回復之鉅額投資後,始對該商品製造者行使專利侵權主張。   然而,一般對於NPE對專利制度以及專利市場之影響,會以Patent Troll之行為模式作為觀察起點,例如,有論者認為專利蟑螂所從事購買與再行出售專利的行為,可以增進專利交易市場的效率化。同時,該行為不僅讓弱勢的專利創作者享有因其創作所產生的財務收益外,其亦發揮了同於仲介者(dealers)或是市場創造者(market-makers)功能的專利金融性市場 。亦有論者認為,專利蟑螂的行為已經帶來經濟上的危害(economic harm),因其慣於同時向不同公司索取適度的(moderate)專利授權費用。而為了避免陷入風險極高且耗費甚鉅的專利侵權訴訟,被索取專利授權費用之公司皆傾向給付專利蟑螂一定額度的專利授權金,以免除陷入不確定專利訴訟的泥皁。同時,專利蟑螂亦傾向選擇目標公司(target companies)最脆弱的時點,例如:新產品的發表、宣傳費用的投入等,再對其提出專利侵權訴訟,使其被迫必須遵循專利蟑螂的要求來擺脫可能陷入專利侵權訴訟的羈絆。

談電磁紀錄證據定義與方法-比較加拿大電子證據統一法與我國刑事訴訟法相關規定

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力

2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。

TOP