秘魯提出基因護照提案簡化基因資源跨境交換之程序

  在今(2007)年1月底召開的生物多樣性公約技術專家小組會議(Technical Expert Group of the Convention on Biological Diversity),秘魯提出透過核發一種類似來源地證明的“基因護照”(genetic passports; passport for genetic resources),簡化基因資源的跨境交換(cross-border exchanges)手續,以便協助更多國家得以靈活利用各國基因資訊。由於透過基因護照的核發,一國對其基因資源的掌控得以超出其國境之外,因此秘魯此項提案受到許多專家背書支持。

 

  根據1992簽署的生物安全議定書(Convention on Biological Diversity, CBD),各國對源自於其國境內之基因資源擁有主權。基因資源為生技研究所仰賴的重要研究資源,基因資源的豐富與否取決於生物多樣性。由於具備豐富生物多樣性的國家多集中在開發中的「南方」國家,長久以來,這些國家境內的基因資源被來自於已開發國家的機構以「研究」、「學術交流」等各種名目帶出,卻無法享受其研究成果,導致目前對基因資源已立法管理的國家(多為開發中國家),法令內容主要偏向阻擋不法利用,而非鼓勵多元利用,無形中使國際間基因資源之使用逐漸形成壁壘。

 

  秘魯最近所提出的提案即是為了解決上述問題,根據秘魯的提案,每一種資源的“基因護照”將發給CBD會員國負責主管基因資源管理事務的政府主管機關。“基因護照”將涵蓋所有的基因資源,包括動物、植物及微生物;護照中將會註明此等物質之來源地、特性及負責單位。透過基因護照的核發,國與國之間得以建構基因資源流動及運送的國際共識。由於此項提案受到生物多樣性公約技術專家小組會議二十五國代表的全體同意,CBD秘書處希望該提案能在今(民國96)年10月將在加拿大召開的第九屆大會中通過。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 秘魯提出基因護照提案簡化基因資源跨境交換之程序, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=1179&no=64&tp=1 (最後瀏覽日:2026/01/15)
引註此篇文章
你可能還會想看
日本公布資料信託功能認定指引ver1.0並進行相關實驗

  日本總務省及經濟產業省於2017年11月至2018年4月間召開6次「資料信託功能認定流程檢討會」(情報信託機能の認定スキームの在り方に関する検討会),檢討具備資料信託功能之「資料銀行」認定基準及模範條款等事項,於2018年6月公布「資料信託功能認定指引ver1.0」(情報信託機能の認定に係る指針ver1.0),以利實現個人資料流通並創造新服務型態。資料銀行係指基於與個人間資料利用契約,透過PDS(personal data store)等系統管理個人資料,根據個人指示或預先設定的條件,於判斷妥當性後向第三方提供資料之行業。目前指引內容包括︰(1)資料信託機能認定基準︰具體內容包括業者適格性、資訊安全原則、資訊安全具體基準、治理體制、業務內容等;(2)模範條款記載事項︰針對個人與資料銀行、資料銀行與資料提供者、資料銀行與接受資料提供者間關係,列出具體應記載事項;(3)資料信託機能認定流程。   作為日本總務省「資料信託功能運用推動計畫」(情報信託機能活用促進事業)一環,日立製作所、東京海上日動火災保險、日本郵局等於2018年9月10日發表將根據「資料信託功能認定指引ver1.0」,進行「資料銀行」個資管理、提供及運用等實驗,參與者分別扮演資料提供者、資料銀行和資料利用者三種角色,未來將會參考實驗結果,提出認定基準改善建議。

英國與新加坡監管沙盒機制概述

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

日本醫藥品醫療器材等法修正研析─以醫療應用軟體為中心

TOP