八位美國眾議員於2007年2月6日連署提出新法案,擬賦予司法部門首長更大的權限要求網路服務提供者(ISP)記錄用戶的網路活動並留存特定的用戶資訊。草案提交眾議院審議後,隱私保護機構紛紛表達反對立場。
此次由德州眾議員Lamar Smith主導的新法案「the Internet Stopping Adults Facilitating the Exploitation of Today's Youth Act of 2007(簡稱SAFETY Act)」中,ISP業者必須保留的用戶資料,最低限度需包括用戶姓名、地址、電話及IP位址;至於用戶資料的留存期間,則將交由美國司法部決定。以現況而言,多數ISP業者所保存的用戶資訊均在半年以下;然而美國司法部部長Alberto Gonzales曾於2006年9月公開倡議ISP業者資料留存期間,應以兩年為宜。
此外,草案亦要求ISP業者發現其所提供的服務存在兒童色情情事時,應主動通報主管機關,否將面臨15至30萬美元的罰金;若其有意地助長兒童色情的流傳,更可能面臨最高10年的徒刑。
批評者如「民主及科技中心」(Center for Democracy and Technology;CDT)表示,此法案不啻為對憲法修正條文第一條的威脅,毫無限制的授權更可能肇致用戶資料的留存期間成為司法首長個人得以專擅決策之事項。
英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2020年4月17日,依據英國資料保護法(Data Protection Act 2018)第115條第3項第b款之授權,針對2020年4月10日Apple和Google因應COVID-19疫情發表之「接觸史追蹤應用程式框架」(Contacting Tracing Framework, CTF),發布意見報告。報告認為,由於CTF具備以下三大特性:(1)不會在裝置間交換個人資料,如帳戶資訊或使用者名稱;(2)配對過程僅在裝置本身進行,並不會有如應用程式伺服器之第三方介入;(3)不需要地理位置資訊就能順利運作,因此符合英國資料保護法第57條有關「透過設計並作為預設以保護個人資料」(Data protection by design and default)之規定。 縱然CTF符合英國資料保護法之規定,英國資訊委員辦公室仍於報告中指出:「未來軟體開發商若於接觸史追蹤應用程式中使用CTF技術,該應用程式於處理使用者之個人資料時,仍應隨時符合英國資料保護法關於透過設計並作為預設以保護個人資料之規定。」COVID-19疫情席捲全球,如何於「掌握感染者接觸史以預防疫情擴散」與「保障個人資料及隱私」間取得平衡,實為各國政府需考量之重要議題。我國人工智慧實驗室於2020年4月開發之「社交距離App」,便是使用類似Apple和Google之CTF技術。此份英國資訊委員辦公室意見報告,等於針對社交距離App是否侵害隱私權益,提供相當解答與指引。
電力市場2.0--2015德國電力市場改革最新發展 音樂著作授權費 演出拉鋸戰根據著作權法第 82 條規定,著作權仲介團體與利用人間,對使用報酬爭議之調解,由著作權專責機關設置著作權審議及調解委員會辦理。新近社團法人中華音樂著作權仲介協會( MUST )提出網路電視、電影、網路廣播、網路上提供音樂欣賞、入口網站、網路音樂下載等行業業者公開傳輸費率,業者如有串流、下載、同步傳輸行為,應繳納高額之授權費用,遭到 業者抗議,此舉將遏殺數位業者萌芽的機會。 事實上在 94 年時,智慧局的費率審議委員會即曾駁回 MUST 提出的網路電視、電影等公開傳輸費率,但因網路電視、網路影片,所運用的素材不只是音樂,還包括小說、攝影、圖片,如果每一著作人都主張要收費,利用人的負擔將太重,所以智慧局當時並未通過其新費率。 不過,新近 MUST 又重新提出一個新的費率,網路電視、電影( MOD )如以串流方式公開傳輸,授權費用是業者前一年營業收入的 6% ;如果下載到硬碟、光碟片等,不是重製權,只是收下載「過路費」,授權使用費提高到前一年度營收的 10% ;如果是網路電視、電影同步傳輸,則以前一年度營收 2% 收取費用。即使是公益、非營利性的網路電視、電影,也要以全年度節目製播預算的 0.3% 計算音樂著作使用報酬。 由於此一費率與新興網路業者生存關係重大,經濟部智財局於 4 月中旬舉行「 MUST 新增、調高公開傳輸、公開演出使用報酬率意見交流會」,會中最後同意,由同行業的利用人團體一起組成談判小組,再與 MUST 進一步協商,具體討論出雙方能接受的方案。
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。