八位美國眾議員於2007年2月6日連署提出新法案,擬賦予司法部門首長更大的權限要求網路服務提供者(ISP)記錄用戶的網路活動並留存特定的用戶資訊。草案提交眾議院審議後,隱私保護機構紛紛表達反對立場。
此次由德州眾議員Lamar Smith主導的新法案「the Internet Stopping Adults Facilitating the Exploitation of Today's Youth Act of 2007(簡稱SAFETY Act)」中,ISP業者必須保留的用戶資料,最低限度需包括用戶姓名、地址、電話及IP位址;至於用戶資料的留存期間,則將交由美國司法部決定。以現況而言,多數ISP業者所保存的用戶資訊均在半年以下;然而美國司法部部長Alberto Gonzales曾於2006年9月公開倡議ISP業者資料留存期間,應以兩年為宜。
此外,草案亦要求ISP業者發現其所提供的服務存在兒童色情情事時,應主動通報主管機關,否將面臨15至30萬美元的罰金;若其有意地助長兒童色情的流傳,更可能面臨最高10年的徒刑。
批評者如「民主及科技中心」(Center for Democracy and Technology;CDT)表示,此法案不啻為對憲法修正條文第一條的威脅,毫無限制的授權更可能肇致用戶資料的留存期間成為司法首長個人得以專擅決策之事項。
美國「2009年經濟復甦暨再投資法」(America Recovery and Reinvestment Act, ARRA),將醫療產業中的醫療資訊科技列為重點發展項目之ㄧ。以國內全面採行「電子病歷健康記錄」(electronic health records, EHRs)系統為目標,共挹注190億美元的經費,透過聯邦醫療保險或醫療補助計畫的機制支付獎勵金,鼓勵醫師或醫療院所採購並建置院內的電子醫療資訊系統。自2011年至2015年,醫師或醫療院所符合實質EHR使用者(meaningful EHR user)的標準,至多可獲得44000美元的獎勵金;倘於2015年後,其尚未成為實質EHR使用者,則將以每年多1%的比例,逐年減少其醫療保險補助額,直至2019年將減少5%。為了施行此政策,ARRA規定主管機關須於2009年12月31日前確立EHR的標準,包含了相互運用性(interoperability)、臨床功能性(clinical functionality)及安全性等標準。 EHR系統的基礎,也就是電子醫囑(e-prescribing)所涵蓋的功能,能提供臨床及藥費的即時資訊,供醫師判斷何種藥物(包含學名藥)最為安全,且可符合病患經濟負擔;亦可顯示該病患用藥紀錄,及其他醫生曾開立的處方,供醫師比對並觀察病患潛在的藥物過敏現象,若系統偵測出藥物間相斥的情形,亦將自動發出安全警示。此外,以電腦輸入處方並自動傳送至領藥處的模式,不僅可省卻病患冗長的等候領藥時間,亦能減少藥劑師因難以判讀字跡所導致的配藥錯誤。 一項由美國藥物照顧管理協會(Pharmaceutical Care Management Association, PCMA)所贊助的調查研究指出,ARRA中的病歷健康資訊科技化措施,將使e-prescribing的運用率,在未來五年內增加75%;而在往後10年,此將減少約3500萬筆的用藥指示錯誤,消弭因服藥錯誤導致的死亡事件,並能節省220億的用藥支出;其所帶來的效益實遠超過政府所挹注的經費。
印度隱私權制度下兒童資料安全的保護現狀印度電子資訊產業技術部(MeitY)2022年11月在網站上公布了個人資料資訊保護法草案(Digital Personal Data Protection Bill,以下簡稱該法案),並於2023年7月提交議會審查。目前印度民法不承認未成年人(未滿18歲者)具有自主簽訂契約的能力。因此,取得的兒童同意不具有法律效力,必須徵得父母或是監護人的同意才能合法蒐集兒童個人資料。 根據印度2022年個人資料資訊保護法案草案,任何未滿18歲的人都被歸類為「兒童」。該法案中同時限制專門向兒童發送的廣告,並且監管任何追蹤兒童行為的情況。目前國際隱私法(例如:歐盟通用資料保護條例 (GDPR)、加州消費者隱私法(CCPA)等)的兒童定義多在13至17歲之間。但考慮到兒童個人資訊的敏感性和潛在危害,印度政府採取了較保守嚴謹的路線。政府也已被授權制定有關處理兒童個人資訊的細則,特别是確保資料使用人不可使用可能對兒童造成傷害的個人資料。 根據社會發展狀況,兒童若每次在網路平台上進行活動時都需經過父母或是監護人同意不甚妥適,且根據前述說明,兒童界定年齡為18歲以下,若依照統一年齡範圍進行控管,實際執行上面臨窒礙難行之處。故修法者在對於該法案修改意見中,引用了其他國家隱私法中的不同年齡分類限制,以求降低年齡門檻限制,或是根據用戶的年齡制定差異化的授權要求。 另一個產生的爭議為,該如何驗證父母或是監護人的同意表示。法條中目前無明確規範何為「有效之同意表示」,現行各平台使用不同的方法獲得父母或是監護人的同意,目前有兩種方式,包括點選「同意」按鈕,或是在用戶條款中表示若使用服務等同於監護人同意。 關於兒童年齡之界定,是否將參考其他國家規範進行差異化設定,目前暫無明確定論(包括如何調整、年齡級距設定),根據資訊使用的普及,兒童年齡的界定可以預期的將會進行調整;關於如何有效驗證父母或是監護人的同意表示,目前在技術上大多服務商都偏好透過會員註冊時的同意按鈕或是用戶條款中列明若使用服務即代表同意這兩種方式認定,在這兩種方式之後,系統是否有設定驗證機制,以及需要何種驗證方式才可以認定父母或是監護人的同意表示是符合法律效力的,都需後續再進行研擬。
日本文化廳發布《人工智慧著作權檢核清單和指引》日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。
FCC對於頻譜管理與拍賣的法規修正美國聯那通訊委員會 (Federal Communications Commission, FCC)在本月十四日公佈了一份有關「商業頻譜加強法案(Commercial Spectrum Enhancement Act, CSEA)」的執行命令與法規預訂修正通知(Declaratory Ruling and Notice of Proposed Rule Making)。希冀能制訂一定的行政規則而確切地遵照CSEA的規範;同時,FCC也在文件報告中也提出了一些對於目前競價拍賣規則的相關修正意見。 最初在 CSEA法案中設計了頻譜的拍賣收益機制,主要係補償聯邦機構在一些特定頻率(216-220 MHz, 1432-1435 MHz, 1710-1755 MHz, and 2385-2390 MHz)中,以及一些從聯邦專屬使用區重新定頻到非專用區的頻率,因移頻所支應出的必要成本。而在FCC的公佈報告中,委員會認為惟有定義清楚,方能有效地落實該法的執行。因此FCC詳細解釋說明了CSEA中對於「總體現金收益(total cash proceeds)」的意義,FCC認為所謂的總體現金收益應該是原始獲標的價格扣除掉任何有可能的折扣或扣損;同時,FCC也在預定修正公告中,認為應改變委員會的拍賣價格規定以配合CSEA的規定。另外,也修正了部落地的拍賣信用補償制度(Tribal Land Bidding Credit Rule)等規定。