為建構政府雲發展的妥適環境,美國於今年度啟動「聯邦風險與認可管理計畫」(Federal Risk and Authorization Management Program, FedRAMP),由國家技術標準局(National Institute of Standards and Technology, NIST)、公共服務行政部(General Service Administration)、資訊長聯席會(CIO Council)及其他關連私部門團體、NGO及學者代表共同組成的跨部會團隊,針對外部服務提供者提供政府部門IT共享的情形,建構一個共同授權與持續監督機制。在歷經18個月的討論後,於今(2010)年11月提出「政府雲端資訊安全與認可評估」提案(Proposed Security Assessment & Authorization for U.S Government Cloud Computing),現正公開徵詢公眾意見。 在FedRAMP計畫中,首欲解決公部門應用雲端運算所衍伸的安全性認可問題,因此,其將研議出一套跨部門共通性風險管理程序。尤其是公部門導入雲端應用服務,終究會歸結到委外服務的管理,因此本計劃的進行,是希望能夠讓各部門透過一個機制,無論在雲端運算的應用及外部服務提供之衡量上,皆能依循跨機關的共通資訊安全評定流程,使聯邦資訊安全要求能夠協調應用,並強化風險管理及逐步達成效率化以節省管理成本。 而在上述「政府雲端資訊安全與認可評估」文件中,可分為三個重要範疇。在雲端運算安全資訊安全基準的部份,主要是以NIST Special Publication 800-535中的資訊安全控制項作為基礎;並依據資訊系統所處理、儲存與傳輸的聯邦資訊的敏感性與重要性,區分影響等級。另一部份,則著重在持續性的系統監控,主要是判定所部署的資訊安全控制,能否在不斷變動的環境中持續有效運作。最後,則是針對聯邦資訊共享架構,出示模範管理模式、方策與責任分配體系。
德國新營業秘密保護法—契約擬定「禁止逆向工程」條款建議德國新營業秘密保護法(The new German Trade Secrets Act, TSA)其中一個亮點即為:除非有明確契約或其他法規要求,逆向工程是合法的,其規範於該法第3條第1款,德國以往舊法(不正競爭防止法)並未特別明文,我國營業秘密法亦同。現今企業應盡快透過調整契約內容、保密政策或保密技術來防止該類法所「允許」之情形發生[1],以避免供應鏈間之風險。德國法律專家提出有關「制定合作契約」建議供參: 禁止條款應有期間明文:契約起草禁止逆向工程條款時需注意其法律效力。法明文允許進行逆向工程,也代表著可促進企業市場參與並能從現有技術中受益做進一步發展。如契約一律禁止形同限制經濟自由,無論該條款訂於平行契約(如研發契約)或於垂直契約(如授權契約),往後遇有爭議恐被法院認為條款無效。故可折衷於「期間」加以限制,禁止逆向工程直到產品或服務上市為止,基本上企業只有在確信可以收回成本情況下才會投資於新技術開發。合理而言應在產品或服務公開上市後,才可以對產品或服務進行逆向工程。 注意誠實信用原則並延長條款效力:現行法就禁止逆向工程與否可由締約雙方協議。該禁止條款並不當然有違德國民法第307條第2項誠實信用原則而不利益於締約雙方之情況。但為避免仍有違誠實信用原則疑慮,契約可明確約定於產品或服務上市前不限制締約人使用相對人產品或服務並從中發現技術或資訊,也確保該期間內營業秘密所有權人之營業秘密專有權。合作契約亦可約定禁止條款於契約提早終止一定期間內仍有效。 [1]Dr. Henrik Holzapfel,New german law on the protection of trade secrets, https://www.mwe.com/insights/new-german-law-protection-trade-secrets/ (last visisted Sep.25,2019).
OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。
美國財政部發布「非銀行金融、金融科技和創新」之金融科技創新報告美國財政部於今(2018)年7月31日發布一份重要報告,呼籲對金融科技領域的創新要採取更靈活,更有利的監管方法。這份報告主題為「非銀行金融、金融科技和創新」,其內容提及加密貨幣和分散式帳本技術(Distributed Ledger Technologies,DLT),並指出該些技術正由金融穩定監督委員會(Financial Stability Oversight Council)的工作組來主導進行跨部門的研究。整體來說,該報告表明美國政府大力推動新興金融技術的發展,並使現有的監管框架現代化,主張更加精簡和適當的監督,以消除發展過程中的障礙。並對於可能阻礙金融科技發展的法規,提出合理化建議,包括協調各州間加密貨幣交易的資金移轉立法。 美國財政部提及金融服務業正在開發的一系列DLT應用程式,其優勢仍有高度不確定性,因而進一步倡導使用監理沙盒,並鼓勵創建實驗室、工作組、創新辦公室,和其他讓行業參與者直接接觸監管機構的管道。監管機構和創新者之間的共生關係,是支持美國經濟和保持全球競爭力所必需的。該報告最後結論提到美國必須與新興技術並肩一起進步,要以不限制創新的方式來適當調整原有的監管策略。美國監管機構必須比過去更加靈活地履行職責,不能給創新的發展帶來不必要的阻礙。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」