本文為「經濟部產業技術司科技專案成果」
英國財政部於2018年10月29日宣布將不再採用二代民間融資(Private Finance 2,PF2)。 PF2是英國自1992年推行的民間融資提案(Private Finance Initiative, PFI)的進階版。PFI屬於「公私協力」(Public Private Partnerships)範疇,其概念為政府運用民間機構的管理能力及商業的專業知識,和民間機構簽訂PFI契約,先由民間機構興建、營運公共建設,政府再向民間機構購買該公共建設之公共服務。政府在民間機構營運公共建設後,依據雙方契約所訂之評估指標及規範,檢視民間機構之服務品質有無符合約定,再予以付款,倘未達到績效指標或資產無法提供服務時,則有扣款機制。 PFI在英國運作20多年,雖確實有效減輕政府財政負擔,但也有長期計劃缺乏彈性、私部門獲利太多、採購耗時等缺點。因此,英國於2011年對PFI進行改革,推出PF2。PF2有PFI制度及基本架構,但讓政府參股投入部分資金,成為投資者之一;簡化案件行政程序,從計畫啟動到選出最優申請人,原則不得超過18個月;要求民間機構披露公開資產報酬,提升透明度等。 PFI和PF2契約雖然已用於資助學校、醫院和其他基礎設施的建設,但此二模式的使用率近來已顯著下降,此可從英國雖修正PFI推出PF2,但PF2迄今僅使用了六次,以及目前的PFI及PF2契約,有86%是在2010年前簽立可證。此外,採用PFI或PF2契約後,如發生契約提前終止情形,機關須依約買回公共建設,導致仍須支付高額費用,凸顯PFI或PF2契約難以調整的不靈活性而飽受批評。又,預算責任辦公室(Office of Budget Responsibility)亦表示民間融資提案(private finance initiative)對政府的財政具有風險。 英國財政部已聽取前述各個關注,並且決定未來的施政規劃不再採用PF2 ,但財政部同時表示不會終止現有的PFI和PF2契約,會履行承諾完成履約,因為契約終止所生之高額補償,將使PFI或PF2不具「公帑節省價值」(Value for Money),故政府仍將繼續致力提高現有PFI契約的價值。 PFI起源於英國,此模式受不少國家效尤。而今英國宣布不再採用PFI的進階模式-PF2,此政策對PFI有無影響,以及英國政府未來是否會再規劃新的採購模式或公私協力措施以建設公共服務設施,相信將受到各國的關注。
歐盟委員會發布NIS 2實施條例以定義資安重大事件.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 歐盟委員會於2024年10月17日通過了歐盟第2022/2555號《於歐盟實施高度共通程度之資安措施指令》(Directive (EU) 2022/2555 on measures for a high common level of cybersecurity across the Union,下稱NIS 2)的第一個實施條例(下稱「實施條例」)。NIS 2要求企業發生重大事件(Significant incident)後24小時內,應向會員國主管機關通報,依實施條例之規定,符合以下任一條件會被視為重大事件: 1. 造成超過50萬歐元或上一年度營業額5%以上的直接財務損失。 2. 造成商業機密洩漏。 3. 已造成或能造成自然人死亡。 4. 對自然人健康已造成或能造成大量傷害。 5. 疑似惡意且未經授權的存取網路和資訊系統造成嚴重運作中斷。 6. 反覆發生的事件。 7. 符合第5條至第14條特定資訊服務的事件。 實施條例主要在於補充上述條件的第6項及第7項。第6項規定於實施條例的第4條,定義「反覆發生」的要件,包含:(1)6個月內發生兩次;(2)有相同的根本原因;(3)大致符合超過50萬歐元或年營業額5%以上的直接財務損失。第7項則在實施條例的第5條至第14條列舉特定資訊服務提供者的重大事件條件,而其他資訊服務則包含DNS(domain name system)服務、TLD(top-level domain)網域註冊管理、雲端運算服務、資料中心服務、內容交換網路、託管服務、網路商城、搜尋引擎、社群網路服務、信託服務等,對於不同服務可能造成的影響各別列舉視為重大事件的條件。 歐盟委員會發布該實施條例確立何謂重大事件,並依歐盟考量資訊安全威脅所制定的NIS 2,將公共電子通訊網路或服務、會員國等進行連結,要求會員國設置資訊安全主管機關、危機管理機構、資訊安全聯絡點等義務,建立資訊安全通報機制,確保歐盟有整體的資訊安全戰略及框架,阻止潛在危機擴散。我國於2018年已制定《資通安全事件通報及應變辦法》並建立四級資通安全事件的標準,其標準以機敏或業務資訊遭洩漏對機密性的影響、資通系統遭竄改對完整性的影響,以及資通系統運作遭中斷對可用性的影響為依據,但並未對不同類型服務有制定更精細的定義。歐盟實施條例中有關重大事件之定義,可做為我國相關主管機關參考對象,研擬更準確的資通安全事件標準。
美國眾議院發布反壟斷五大法案,恢復數位市場競爭並防堵科技平台壟斷美國眾議院反壟斷委員會於2021年6月11日宣布五大反壟斷立法議案,目標是透過立法提升消費者、勞工和中小企業競爭空間,防止大型科技平台壟斷數位市場。2019年美國國會反壟斷委員會調查互聯網巨頭Amazon、Google、Facebook、Apple(GAFA)涉嫌濫用市場支配地位進行壟斷、抑制競爭、侵害用戶隱私、破壞新聞出版多元化。2020年10月發布《數位市場競爭調查》(Investigation of Competition In Digital Markets)強調恢復數位經濟市場競爭力重要性。2021年美國眾議院隨即提出五大反壟斷改革法案具體落實政策方向。 終止平台壟斷法案(Ending Platform Monopolies Act) 防止占主導地位的平台利用其對多個業務的控制能力,由董事或受託人持有公司25%以上的股票、盈利或資產,或以其他方式掌握實質控制權,要求用戶使用其平台購買產品或服務進而取得優勢地位。 美國選擇與創新線上法案(American Choice and Innovation Online Act) 禁止平台的歧視行為,包括使自家產品、服務及業務在平台上享有對手沒有的競爭優勢,禁止自我偏好或歧視其他同類業者之行為。 平台競爭與機會法案(Platform Competition and Opportunity Act) 禁止具獨占優勢平台藉由收購其他具競爭力對手,以擴大或鞏固線上平台市場力量。 透過啟動服務交換強化相容性和競爭力法案(Augmenting Compatibility and Competition by Enabling Service Switching Act) 透過啟動服務交換,滿足互操作性和資料可攜性,降低企業和消費者進入壁壘與轉換成本,使資料更容易移動到其他平台。 併購申報費現代化法案(Merger Filing Fee Modernization Act) 提高企業向政府申請併購案之審議費用,例如超過50億美金以上併購案審議費用從美金28萬提升至225萬,確保美國司法部和聯邦貿易委員會執行反壟斷資源。
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。