在2012年12月19日,歐盟執委會宣布一項決議,該決議認可紐西蘭為已提供相當於歐盟保護層級之個人資料保護的國家;根據1995年歐盟個人資料保護指令(EU Data Protection Directive of 1995),此決議將使位於歐盟會員國(目前為27國)的事業,可以不必採取額外的防護措施,即可將個人資料自歐盟會員國傳輸到紐西蘭。 根據歐盟個人資料保護指令,個人資料不許被傳輸至歐盟會員國以外的國家,除非這些國家被歐盟執委會認可為,已提供相當於歐盟保護層級的個人資料保護;或此些國家對上述傳輸已採取額外的防護措施,例如已取得當事人之同意,或已於相關契約內附有經歐盟認可之個人資料保護相關契約條款。歐洲經濟區(EuropeanEconomic Area;簡稱EEA)內的另三個國家,亦即挪威、冰島、列支敦士登,亦因EEA條約(Agreement on the European Economic Area)之約束,而須遵行個人資料保護指令。 由於上述認可的過程相當嚴格而繁複,目前已取得歐盟執委會上述認可的非歐洲國家,除了紐西蘭之外,僅有例如,加拿大、阿根廷、以色列、澳洲等少數國家;至於歐洲國家亦僅有例如瑞士、安道爾等數國。
美國歐盟貿易和技術委員會發布第四次聯合聲明,強化高科技技術及貿易安全合作美國歐盟貿易和技術委員會(Trade and Technology Council,簡稱TTC)第四次部長級會議於2023年5月31日發布聯合聲明。TTC繼續作為美國和歐盟對俄羅斯在烏克蘭戰爭中協調及有效反應的平台,處理包括與制裁相關的出口限制、打擊外國資訊操縱和干擾,以及破壞人權並威脅到當事國及第三國民主制度的運作和社會福祉等議題。 本次TTC聯合聲明之五大議題重點介紹如下: (1)強化跨大西洋新興技術合作以實現美歐共同領導:包括監控與衡量現有和新出現的人工智慧風險;發展智慧電網下智慧移動標準及互通性(Interoperability);提升半導體供應鏈的合作,包括鼓勵研發、資訊共享;建立工作小組共同處理量子技術問題。 (2)促進貿易及投資的永續性與新機會:乾淨能源補助;避免關鍵礦物供應受地緣政治影響;藉由數位工具提升貿易便捷的合作;相互承認醫藥品製造實務作法等。 (3)貿易、安全和經濟繁榮:出口管制與制裁相關出口限制的合作;交換對於與國安風險有關的特定敏感技術及關鍵設施投資審查的看法;重視對外投資管制,以保護敏感技術不流於對國際和平與安全有疑慮的用途;討論非市場政策與實務、及經濟脅迫(Coercion)的威脅與挑戰。 (4)連結性(Connectivity)和數位基礎設施:加速合作發展6G無線通訊系統;國際連通性與海底電纜計畫。 (5)在不斷變化的地緣政治數位環境中捍衛人權和價值觀:建構具透明性與可問責之線上平台;處理在第三國進行外國資料操縱與干預議題。 TTC將透過各工作小組,持續關注、研究上述議題的發展,並預計於2023年底於美國再次召開會議,檢視合作的成果。
英國國家醫療服務體系(NHS)公布國家資料退出(Opt-out)操作政策指導文件個人健康資料共享向為英國資料保護爭議。2017年英國資訊專員辦公室(ICO)認定Google旗下人工智慧部門DeepMind與英國國家醫療服務體系(NHS)的資料共享協議違反英國資料保護法後,英國衛生部(Department of Health and Social Care)於今年(2018)5月修正施行新「國家資料退出指令」(National data opt-out Direction 2018),英國健康與社會照護相關機構得參考國家醫療服務體系(NHS)10月公布之國家資料退出操作政策指導文件(National Data Opt-out Operational Policy Guidance Document)規劃病患退出權行使機制。 該指導文件主要在闡釋英國病患退出權行使之整體政策,以及具體落實建議作法,例如: 退出因應措施。未來英國病患表示退出國家資料共享者,相關機構應配合完整移除資料,並不得保留重新識別(de-identify)可能性; 退出權行使。因指令不溯及既往適用,因此修正施行前已合法處理提供共享之資料,不必因此中止或另行進行去識別化等資料二次處理;此外,病患得動態行使其退出權,於退出後重新加入國家資料共享體系;應注意的是,退出權的行使,採整體性行使,亦即,病患不得選擇部分加入(如僅同意特定臨床試驗的資料共享); 例外得限制退出權情形。病患資料之共享,如係基於當事人同意(consent)、傳染病防治(communicable disease and risks to public health)、重大公共利益(overriding public interest)、法定義務或配合司法調查(information required by law or court order)等4種情形之一者,健康與社會照護相關機構得例外限制病患之退出權行使。 NHS已於今年9月完成國家資料退出服務之資料保護影響評估(DPIA),評估結果認為非屬高風險,因此不會向ICO諮詢資料保護風險。後續英國相關機構應配合於2020年5月前完成病患資料共享退出機制之建置。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。