具社會經濟學基礎的ZOPA在2005年一出現,即被經濟學人報和集團研究指出,其將是砍掉傳統銀行以及改觀自古以來民眾對貨幣概念的驚人創新金融服務。這種抽離中間金融機構的消費借貸平台,使得交易雙方能取得更滿足交易條件。
相較傳統的借貸,這樣較高收益的交易也同樣帶來較高的風險。不過,ZOPA透過包括信用評等分類、將同一出借款項出借給多人等方式,期使風險降到最低。不過,出借人也要特別注意相關法律議題。依據英國1974年之消費者信用貸款法案(Consumer Credit Act),任何在從事商業交易行為中出借金錢之人,且非偶而為之者,應取得公平貿易部(Office of Fair Trading/ OFT)核發之消費者信用貸款執照(Consumer Credit License),否則為觸犯刑法,會被處以刑罰或罰鍰。目前,在ZOPA可借入之金額已超過15,000英鎊,未來勢必繼續發展,且不排除跨入現有銀行業務範圍。
美國聯邦貿易委員會(Federal Trade Commission, 以下稱FTC)在2017年2月6號於其網站中公布, VIZIO, Inc.(以下稱VIZIO),世界最大的智慧電視製造商之一,在未取得購買該公司產品之千萬餘名消費者同意下,即於所生產之智慧型電視中,安裝蒐集消費者收視行為數據之軟體,然此舉業涉及違反美國聯邦貿易委員會法第45條(15 U.S.C. § 45 (n))以及紐澤西州消費者欺詐法(New Jersey Consumer Fraud Act)。為此VIZIO將支付和解金與美國聯邦貿易委員會及紐澤西州檢察總長辦公室。 本案起訴狀內容指出,VIZIO及其相關企業於2014年2月起便開始於其製造之智慧電視中獲取消費者在收視有線電視、寬頻、機上盒、DVD播放機、無線廣播以及串流裝置等相關影像資料時之資訊。這些資訊包含了性別、年齡、收入、婚姻狀況、教育程度、住屋資訊等交付與VIZIO、第三方及其相關企業做為行銷、發送特定廣告使用。 起訴狀中並稱該公司所謂之智能互動機制,雖可做為協助節目製作和建議,卻也同時於未對消費者詳細說明之下,逕行蒐集相關收視資訊,而此類追蹤消費者資訊屬不公平且欺騙的行為,已違反了FTC與紐澤西州對於消費者保護之法律。 為達成本案之和解,該公司願支付兩百二十萬美元作為和解金,包含向FTC繳納的一百五十萬美元及一百萬美元罰款與紐澤西州消費者事務所。聯邦法院命令並要求VIZIO必須清楚揭露其蒐集資料及分享給他方單位之行為,並取得消費者明示同意;另一方面,該命令亦禁止VIZIO對他們所蒐集消費者之隱私、安全及機密性資訊做誤導性的不實陳述以及刪除於2016年3月1日前所有以不當方式取得之消費者個人資料。該公司尚須接受兩年一次的隱私權安全保障計畫(名詞),包括全面性隱私風險評估、識別消費者個資之潛在不當使用情形,並制訂相關措施來修復這些風險。另新增一項銷售管理計畫,以確保該公司產品經銷商及售後服務均能就消費者個人資料得到保障。 此次事件而言,和解金雖非屬可觀之金額,然重點在於作為世界最大的智慧電視製造商之一的VIZIO,經揭露此一訊息後對其商譽之影響,或許才是最大的打擊。為了在大數據時代中能有效的管控法律風險,任何蒐集消費者行為等個人資料時,均應符合相關法令的規範,如建立個人資料保護機制並事前告知取得消費者蒐集之同意為宜。
歐盟智慧財產局運用科技強化智財保護,正式啟動產品的區塊鏈物流認證計畫(EBSI-ELSA)歐盟智慧財產局(EUIPO)為打擊仿冒,保護歐盟消費者及智慧財產權人,於2023年5月31日宣布正式啟動產品的區塊鏈物流認證計畫(European Blockchain Services Infrastructure - European Logistics Services Authentication, 簡稱EBSI-ELSA)。 根據EUIPO與經濟合作暨發展組織(OECD)於2021年發布的研究指出,全球仿冒產品的貿易額高達4120億歐元,占全球貿易總額的2.5%;每年輸入歐盟的產品約有6%是仿冒產品,嚴重影響歐盟的經濟發展、消費者的健康及安全、智慧財產權人(歐盟品牌企業)的權益。 從2019年至今,EUIPO一直努力研擬透過區塊鏈技術保護智慧財產的具體方案。2022年底,EUIPO與4個不同產業的品牌企業(包含汽車業、電子業、醫藥業、服飾業)、物流業者、荷蘭海關進行一個合作的試驗計畫,內容為透過區塊鏈技術追蹤產品於海外製造後,運送至歐盟銷售的歷程軌跡,以達到認證產品為智慧財產權人生產的目標。該試驗計畫於2023年5月完成概念驗證(proof of concept)。 本計畫結合區塊鏈服務基礎設施(European Blockchain Services Infrastructure, EBSI)及數位分身(digital twins)的概念,於生產、運送、海關查驗、配送至消費者的各階段中,在產品上嵌入一個含有序列化代碼(serialization code)的標籤,該代碼必須經產品所屬智慧財產權人的可驗證憑證(Verifiable Credentials, VCs)認證,結合歐盟智慧財產權相關資料庫的資料,以確認產品與其數位分身的連結。 EUIPO將於2023年底前,正式建置一個開源的區塊鏈認證平台,介接執法機構的風險分析系統,以及商標資料庫(TM View)、設計資料庫(Design View)、歐盟執法入口網(IP Enforcement Portal, IPEP)、歐盟區塊鏈智慧財產註冊系統(IP Register in Blockchain),鼓勵供應鏈、物流鏈中的參與者於此平台上交換資料,以更有效率的方式達到認證產品來源真實性的目標。 EUIPO積極運用區塊鏈科技強化歐盟智慧財產的保護,本計畫除可避免消費者買到仿冒產品外,歐盟的品牌企業未來可於相關智財侵權訴訟中,提出區塊鏈紀錄作為證據,有效主張權益。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。
日本公布資料管理框架,促進資料加值應用日本經濟產業省2022年4月8日公布「協調性資料加值運用之資料管理框架-透過確保資料可信度創造資料價值之新路徑」(協調的なデータ利活用に向けたデータマネジメント・フレームワーク~データによる価値創造の信頼性確保に向けた新たなアプローチ),提示確保資料可信度之方法。經濟產業省於2019年7月31日設立「第3層︰網路空間信賴性確保之安全對策檢討工作小組」(『第3層:サイバー空間におけるつながり』の信頼性確保に向けたセキュリティ対策検討タスクフォース」,以下簡稱工作小組),討論確保資料可信度之要件,以利資料在網路空間內自由流通,並藉由資料創造出新的附加價值。 工作小組為確保資料可信度,首先定義資料管理為「將資料屬性依據其所涉之法令或組織規章,以及因蒐集、處理、利用、移轉等活動而改變之過程,視為一個生命週期加以管理」,並認為資料管理會受到屬性(資料性質,如內容、揭露範圍、利用目的、資料管理主體、資料權利者等)、場域(針對資料之特定規範,如各國、地區法令、組織內部規定、組織間契約等)及事件(產生、改變及維持資料屬性之事件,如生產、蒐集、處理、移轉、提供、儲存、刪除)等三大要素影響,並據此建立資料管理模型。 工作小組期待藉由上述三大要素,依序透過讓資料處理流程(事件)處於容易被觀察的狀態、整理所涉及之相關規範(場域),以及判斷資料屬性等步驟,讓利害關係人之間可更容易進行資料共享及資料治理。