本文為「經濟部產業技術司科技專案成果」
美國有線電視新聞網(Cable News Network, CNN)通過美國聯邦航空總署(Federal Aviation Administration, FAA)之審查,允許使用小型無人機(small Unmanned Aerial Vehicle, sUAS)直接穿越人群中(flying directly over a person or people)進行拍攝採訪,為美國目前第一件允許在商業目的中使用小型無人機自由穿梭人群之豁免核准案。 美國於2016年8月通過聯邦法規第107篇(14 CFR Part 107)又稱小型無人機規則(small UAS rule),規定關於小型無人機之操作規範。其中該規則列舉7種操作禁止事項,須事前經由美國聯邦航空總署豁免方得進行操作(又稱Part 107 Waiver),分別為:1.夜間飛行、2.直接穿越人群飛行、3.經由行進車輛或飛機進行飛行、4.一人操作多架無人機、5.視距外飛行、6.飛行超過400英呎、7.飛行區域近機場或禁航區附近。 CNN本次豁免項目即第107.39條的「直接穿越人群飛行」之規定,該規定除飛越對象為操作者本身,或僅飛越在建築物、車輛上並不受禁止規範外,只要無人機穿越人群皆須經美國聯邦航空總署審查同意方得操作,否則將面臨重罰。此一豁免通過後,改變以往記者與攝影師合作之拍攝手法,改由受訪者直接接受無人機採訪,除節省人力資源外也能突破地勢之空間限制,對於商業營運模式將有重大變革。 然而由於直接穿越人群飛行之風險性極高,因此在本次豁免條件中亦有嚴格限制,除只能使用申請時之特定無人機外,並應該嚴格遵守製造商之使用說明。另外,不得擅自改變無人機之設計或在未經允許下額外加裝配備。同時飛行高度亦不得高於海平面150英呎,並須定期檢測維修。最後每次操作皆須詳細記錄並保存,包含機械故障時須立即回報。
維吉尼亞州最高法院判定該州之垃圾郵件法規違憲維吉尼亞州最高法院以維吉尼亞州電腦犯罪法(Virginia Computer Crimes Act)中關於垃圾郵件之條文違反美國憲法第一修正案對言論自由之保護,於2008年9月12日判定該條文違憲。 2003年時,維吉尼亞州檢方為追查垃圾郵件發送人,而搜索居住於加州地區之Jeremy Jaynes,據信Jeremy Jaynes透過發送垃圾郵件每月可獲利達75萬美元。在該次搜索過程中,維吉尼亞州檢方發現Jeremy Jaynes持有大量電子郵件位址資訊以及上百萬美國線上公司(AOL)用戶之電子郵件帳號及其他個人資訊,檢方便以維吉尼亞州電腦犯罪法中關於垃圾郵件之規範起訴他。Jeremy Jaynes在一審及二審均被判有罪,然其抗辯維吉尼亞州電腦犯罪法中關於垃圾郵件規範之條文違反美國憲法第一修正案所保障之言論自由。 維吉尼亞州最高法院認為,電腦犯罪法中關於垃圾郵件之規範並不以商業性電子郵件為限,則包含政治性言論以及宗教性言論之非商業性電子郵件亦將受到此一條文之限制。有鑑於發表匿名言論乃是美國憲法第一修正案所保護之言論自由的一環,該法條即必須通過嚴格審查標準,亦即該管制規範必須係為達州之重大公共利益之侵害最輕微的手段,電腦犯罪法之該條文並無法通過此一審查標準之檢驗,故而判定違憲。
申請專利時請注意:網頁內容亦可能成為「先前技術」(prior art)日前英國智慧局 (UK Intellectual Property Office) 裁定一則刊登描述銀行用於網路交易時辨識方法的新聞網頁可以做為「先前技術」的有效證據。該局的副局長,同時亦是專利總審查官 Ben Micklewright 指出,網頁上的日期以及內容應該以英美法民事案件中的「機率的平衡」(on the balance of probabilities) 來衡量其證據力。 法國匯豐銀行(HSBC France) 於2005年7月以一項辨識使用者身份的方法對英國智慧局提出專利申請。該方法包含使用者登入時需輸入一組特定的密碼以辨明身份。HSBC France 於申請時以2004年7月2日在法國的申請日期主張優先權。然而英國智慧局的審查官卻依2項證據核駁了 HSBC France 的上述申請,當中一項即為一篇於2004年2月20日刊載於知名雜誌 Computer Magazine 的網站上的文章。該文章描述了一項由 Lloyds TSB提案的身份辨識方法,與HSBC France 提出專利申請的方法有異曲同工之處。 對此 HSBC France 提出抗辨,指出該文章有電子版與紙本,然審查官卻無法提出紙本來證明其公開發表日期。同時HSBC France 亦主張英國智慧局應追隨一件由歐洲專利局 (EPO) 上訴庭的判決,該判決中指出對於網路上電子文章的證據負荷度應高於傳統文件,即應負「無可懷疑」(beyond reasonable doubt)的舉證力。然而 Ben Micklewright 副局長表示英國智慧局無須追從歐洲專利局的判決,並且因為已存在「先前技術」所以該申請案喪失進步性。他更進一步指出上述申請案無論如何皆無法取得商業方法專利,因為該方法不具備技術的本質(“is not technical in nature”)。
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。