奈米科學及奈米技術具有促成技術﹙enabling technologies﹚的特性,具有多元應用潛能,一般期待其能為許多領域﹙例如化學、材料科學、健康、以及能源等﹚帶來永續利益。其中,研究是這項目標中最重要的環節,一方面能發展出有產業應用價值的新技術,另一方面也可以調查奈米科技的潛在風險並建立妥適的控管措施。
為了營造安全且負責任的奈米科技研發環境,並為安全且負責任之應用及使用鋪軌,歐盟執委會﹙European Commission﹚正在規劃研提一個關於負責任奈米科技研究相關的自願執行規範﹙voluntary code of conduct﹚。
本執行規範將採用由歐盟執委會推薦﹙recommendation﹚的方式,由其邀請各會員國、產業界、大學、資助機構﹙funding organizations﹚、研究人員及其他與此相關的利害關係人次來執行。歐盟執委會本身也會將此項原則落實在相關研發政策當中。目前,歐盟執委會在今﹙2007﹚年7月9日至9月21日將對外進行諮詢﹙consultation﹚,所收集到的各項意見會作為本執行規範的基礎。
本文為「經濟部產業技術司科技專案成果」
在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。 資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。 不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。 由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。 美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。 「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。 不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。
日本經濟產業省利用巨量資料(BIG DATA)及人工智慧(AI)開發及測試新的經濟指標日本經濟產業省利用網絡積累巨量資料(BIG DATA)及人工智慧(AI)技術,應用民營企業相關資訊,開發和測試新經濟指標,分別於2017年7月19日及2018年1月8日公開該指標。為達到及早準確掌握經濟動向,對巨量資料等新資料之利用期待越來越高,政府部門也將利用巨量資料及人工智慧技術等方法,針對統計技術進行改革,。 新開發之指標有:1.SNS×AI商業信心指數(SNS×AI景況感指数):乃是透過人工智慧抽取關於商業信心的網路文章,並進行情緒(正/負)評估計算指數,期待有效地估計以每日為頻率之商業信心。2.SNS×AI礦工業生產預測指數(SNS×AI鉱工業生産予測指数):利用人工智慧選取有關工作和景氣之網路相關文件,結合「開放數據」之統計等技術,並利用人工智慧「機械學習」之手法,來預測「工業生產指數」。3.銷售點資訊管理系統(POS,point-of-sale)家電量販店銷售趨勢指標(POS家電量販店動向指標):透過收集具有銷售點資訊管理系統(POS)的家用電子大型專賣店的銷售資料,期待可以掌握每一日之「銷售趨勢」。 新的指數與既存統計指數,如景氣動向指數、中小企業信心指數、工業生產指數、商業動態統計等,其調查週期、公布頻率等,既存指數每月調查公布,新指數則進步至每日調查或每週公布等,在計算及呈現頻率上較既有更為精細。日本政府並設立「Big Data-STATS」網站,以實驗性質公佈上述經濟指標,並廣泛收納民眾意見以提高新指標的準確性。
以Apple Pay服務捲入營業秘密糾紛案為例,提醒企業合作應留意的機密管控作法2025年8月6日,行動支付技術開發公司Fintiv向喬治亞州北區聯邦地方法院亞特蘭大分院控訴Apple科技公司以詐欺手段竊取Fintiv公司的前身公司CorFire的專屬行動支付技術,違反《保護營業秘密法》(Defend Trade Secrets Act,DTSA)及《喬治亞州營業秘密法》(Georgia Trade Secrets Act,GTSA)等規定,向法院尋求賠償。 Fintiv公司主張Apple公司在2011年至2012年間,以行動支付技術之業務合作為由,與CorFire公司進行多次技術性洽談。Apple公司利用雙方簽訂之保密契約,取得CorFire公司的行動支付技術的詳細實施方案之接觸權限,並要求CorFire公司上傳部分機密資料至Apple公司管理的共享平臺,以促進合作交流關係,最終Apple公司放棄與CorFire公司的合作計畫,Apple公司卻將協商期間所獲技術內容整合,並應用於其在2014年推出的Apple Pay行動支付服務。Fintiv公司進一步主張Apple公司為將Apple Pay商業化,與信用卡處理商及銀行組成企業聯盟,並隱瞞其非法取得技術的真相,宣稱Apple公司自主研發Apple Pay。Fintiv公司指出,Apple公司此舉不僅損害Fintiv公司的合法權益,也嚴重破壞市場競爭秩序。此外,Fintiv公司表示,Apple公司多年來有系統地採取類似策略,如以合作名義獲取其他企業之機密,進而不當使用多項機密以進行商業化使用。 觀察前述實務案例可得知,即使雙方基於保密契約交換機密資料,仍存在終止合作衍生的機密外洩糾紛,如:機密資料歸屬不清、逾越授權範圍使用機密資料等風險。建議企業在「資料提供前」,應先透過「盤點」營業秘密與機密「分級」,確認合適揭露的機密資料,再藉由「審查」機制確認必要揭露的內容;在「資料提供後」,要求他方提供機密資料之「收受證明」以明確歸屬,並在合作關係結束後,要求他方「聲明返還或銷毀機密資料」,以降低他方不當使用機密資料的風險。 前述建議之管理作法已為資策會科法所創意智財中心於2023年發布之「營業秘密保護管理規範」所涵蓋,企業如欲精進系統化的營業秘密管理作法,可以參考此規範。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國專利商標局就研發成果商業化議題徵集公眾意見美國專利商標局(United States Patent and Trademark Office, USPTO)於2024年3月15日至5月14日間,就促進研發成果商業化之方法徵集公眾意見;本次議題包括: (1)在研發成果商業化的過程(尤其是利用智慧財產制度以進行技術移轉時),所遇到的最大挑戰及機會各為何?以及希望USPTO提供何種協助? (2)在進行綠色和氣候技術、關鍵和新興技術移轉時,有無遇到任何智慧財產相關的挑戰及機會,以及希望USPTO提供何種協助? (3)請列出可促進研發成果運用、綠色和氣候技術及關鍵和新興技術移轉的政策與作法; (4)請列出各利害關係人在界定潛在被授權人及進行技術移轉時,所面臨的智慧財產相關挑戰,以及現行制度有無需要改變,以減少這些挑戰; (5)請就USPTO於新冠肺炎疫情期間所推動,一用於媒合新冠肺炎治療技術供需雙方之「Patent 4合作夥伴平台計畫」(The Patents 4 Partnerships platform)進行評論,包含促成合作關係之作法; (6)請就USPTO於2022年7月參與之「世界智慧財產權組織(WIPO)綠色計畫」(WIPO GREEN)進行評論,包含USPTO可如何促進計畫的成功與擴大影響力; (7)請列出USPTO可協助特定人士、技術、產業、公司,降低研發成果運用過程中面臨挑戰之可能作法; (8)請列出USPTO可協助「代表性不足群體」(underrepresented group)、個體發明者、中小企業提升研發成果運用認知,及克服現行挑戰的作法; (9)請列出USPTO可協助少數群體服務機構(Minority Serving Institutions, MSIs)、傳統黑人大學(Historically Black Colleges and Universities, HUCUs)擴大其研發成果商業化的機會; (10)USPTO在促進研發成果商業化上,可以發揮的其他作用; (11)其他國家可更促進研發成果商業化的作法。