美國眾議院法制委員會於七月十八日全體一致通過「專利法2007年改革法案」( Patent Reform Act of 2007),根據美國軟體與資訊工業協會( Software & Information Industry Association,簡稱SIIA)的總裁Ken Wasch表示,該修正案的通過是美國專利制度現代化的重要指標,而一個有效率且公正的專利制度對於繼續美國國內經濟發展並領導全世界經濟時具有舉足輕重的地位。眾議院的議員Howard Berman表示,對於美國專利核發品質低落、花費高昂及時間冗長的訴訟程序已經嚴重地阻礙到創新力與創造力。這次修法的目的在於改善專利的品質、嚇阻專利所有人權利的濫用、以異議專利的有效性的方式以提供更有意義且低花費的替代式專利訴訟、並讓美國專利法能與其他國家的專利法調合。
該法案除了通過的部分包括「不正當行為」(Inequitable Conduct )、「犯罪地的限制」(Restrictions on Venue)、「損害賠償的取得」(Awards of Damage)修正。最令人注意的是,刪除了最具爭議的「專利權核准後審查程序」( Posted- granted Review),該程序並無時間的限制,而始得專利侵權訴訟中之被告能夠對專利之有效性向美國專利商標局提出再審的請求。法制委員會對此程序舉行多次公聽會,但修正案仍以增加現有「專利再審制度」( Reexamination)的方式取代之。
實務界認為,本修正案會使得專利的價值降低,而使得一些非以製造產品為公司營運目的,但專事經營擁有並實施專利權為主要歲收來源的「專利巨人」(Patent Tolls)公司生存困難。
日本專利局(特許庁)自2019年啟動「智財戰略規劃師派遣計畫」(知財戦略デザイナー派遣事業),向大專院校派遣智財戰略規劃師,發掘大學內部埋藏之研發成果,協助研發成果落地運用或衍生新創公司,進而帶動產業創新。為支援智財戰略規劃師達成上述工作,日本專利局於2023年4月14日公布「大學研究成果衍生新創案例研究」(大学研究成果の社会実装ケーススタディ,以下簡稱案例集),介紹大學衍生新創重要案例,並針對新創公司設立、簽約等各階段,以對話形式說明應注意事項。 案例集分為第1章「新創篇」、第2章「與企業合作篇」,以及第3章「其他篇」,每篇介紹不同案例,一共收錄9個案例,如「以和企業共有之專利作價,投資設立之新創公司」、「AI新創公司之商業模式」、「新藥開發平臺相關之商業模式」、「活用智財戰略設立之新創公司」、「以與企業共同研究為基礎之專利申請戰略」等。上述案例均依照「發現發掘」(発明発掘)、「制定智財戰略」、「預備衍生新創」(社会実装準備)、「支援後階段」等4個流程展開,以圖文及對話形式,提醒規劃師在各階段應注意之支援重點及注意事項,並以專欄形式說明失敗案例,期能作為大學研究者、產學合作窗口衍生新創之參考。
歐盟決定開放800MHz供無線寬頻應用歐盟執委會於2010年5月6日公布790-862 MHz頻段(簡稱800MHz)的統一技術規格決定(Commission Decision 2010/267/EU on harmonised technical conditions of use in the 790-862 MHz frequency band for terrestrial systems capable of providing electronic communications services in the European Union)。會員國以為,與其單純保留800MHz給地面廣播系統使用,不如開放該頻段供網路使用,故會員國必須立即根據決定,以一致性的技術規格,讓800MHz頻段可以供無線寬頻接取技術使用。 執委會下一步將對數位紅利的使用提出規劃草案,草案內容並將成為預計於6月底公布的「2011-2015年無線頻譜政策方案」(Radio Spectrum Policy Programme 2011-2015)的一部份。各界預期,該草案有可能包括制訂一個所有會員國都必須釋出800MHz供寬頻服務發展的實施日期。
什麼是「商標的反向混淆誤認」?2008年,連鎖咖啡店85度C告85.1度C商標侵權,台北地院以85.1度C影響了85度C的商譽和正常收益,判賠新台幣47萬元。-這是商標侵權爭訟常見「商標混淆」的具體場景,也是所謂的「正向混淆」(Direct Confusion)。試想,現在主客易位,85.1度C 是間小店,耕耘許久仍沒沒無聞;而85度C推出即一炮而紅、門庭若市。85度C是後來者,他是否可以商標混淆為由,主張85.1度C影響了其商譽和正常收益?這個「後商標比前商標強勢」的假設就涉及「反向混淆」(Reverse Confusion)。 所謂「商標的反向混淆誤認」,按經濟部智慧財產局〈行政法院105年度判字第465號判決研析〉,係指:「後商標因較諸前商標廣為消費者所知悉,消費者反而誤以為前商標係仿冒後商標,或誤認為前商標與後商標係來自同一來源,或誤認兩商標之使用人間存在關係企業、授權、加盟或其他類似關係。」 美國於1976年之Big O Tire Dealers, INC. v. Goodyear Tire & Rubber Co.案首度在侵害商標權訴訟承認有反向混淆之適用。然而,由於美國採「使用主義」(First to use),商標之認定係以使用的先後判斷之。而我國採註冊主義,商標先後以申請註冊的時間判斷之。我國最高行政法院105年度判字第465號判決則明確表示商標法明文規範商標註冊申請乃採先申請主義,排除反向混淆理論之適用。
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。