美國眾議院本(9)月通過「2007年綠色化學研究發展法案」(The Green Chemistry Research and Development Act of 2007),其目的在要求總統建立「綠色化學研究發展計畫」(Green Chemistry Research and Development Program),統籌改善聯邦政府對於綠色化學研發、教育宣導及技術移轉等活動之資源投入,而綠色化學則是指那些依安全與有效生產程序製造高品質產品時、能減少使用或產生毒性化學物質之化學產品或製程技術。美國化學協會(American Chemical Society)讚許眾議院通過本法案是睿智的舉動,表示發展綠色化學最能證明經濟和環境得同時併進,發展綠色企業實務,改善藥學加工及本土營建產業以迎刃氣候變遷及能源危機等挑戰。
本法案並要求自明(2008)年起,編列經費由以下政府單位合作執行本計畫,即國家科學基金(National Science Foundation)、國家標準技術研究院(National Institute of Standards and Technology)、能源局(Department of Energy)及環保署(Environmental Protection Agency)。參議院在過去兩屆都通過類似的法案,尚等待參議院支持通過相同法案,以獲得生效。
為減低對石化原料的依賴、發展生物經濟,美國政府積極投入促進綠色科技、生質科技之研發活動,例如從農林廢棄物或副產品或其他來源開發再生性原物料供綠色化學使用。此外,美國政府亦資助建立了生質(biomass)能源及產品的網路圖書館(BioWeb);BioWeb所收錄的生質科技資訊、文獻,許多都是來自大學或國家實驗室著名研究人員,都會先經各領域專家進行嚴格的同儕審查(peer-review),再開給所有公眾瀏覽;BioWeb將會持續蒐羅各種基礎及應用科學知識,並擴充各種經濟及政策相關資訊。BioWeb的理想目標,是擴大規模成為最大最有價值的生質燃料、能源及產品公共資料庫。
本文為「經濟部產業技術司科技專案成果」
長久以來,中國民眾對於抗菌藥物(如抗生素等)存有高度的依賴性,造就了國內規模龐大的抗菌藥物市場,依據中國衛生部統計,中國民眾對抗菌藥物的人均消費額幾乎是美國民眾的10倍。對此,世界衛生組織早於2011年4月7日便正式提出警告與呼籲,若中國未能控制抗菌藥物濫用的情況,很快將面臨「無藥可用」的窘境,並演變為全球人類的災難。 為扭轉前述抗菌藥物濫用狀況,中國衛生部於2012年4月24日正式發布了「抗菌藥物臨床應用管理辦法」(以下稱管理辦法),分別對於抗菌藥物的使用及醫療院所之管理制度作了如下的完整規範: 1. 對抗菌藥物採分級管理制,分為「非限制使用級」、「限制使用級」及「特殊使用級」三類,並要求醫療院所依此分類,擬定「抗菌藥物供應目錄」,凡具有同一通用名稱者,其注射型和口服型各不得超過兩種、具有相似或相同藥理學特徵的藥物亦不得重複列入。 2. 依上述分級對抗菌藥物作臨床使用管理:「限制使用級」者,只有當發生嚴重感染、免疫功能下降合併感染,或病菌只對限制級藥物有反應時,才允許使用;「特殊使用級」者,非經醫療院所內設置的「抗菌藥物管理工作機構」同意,不得使用;惟若係為搶救生命垂危的病患或其他緊急情況下,可以越級使用,但須於24小時內補行程序。 3. 各院所必須設置「抗菌藥物管理工作機構」或專責人員,負責制定抗菌藥物管理制度、擬定「抗菌藥物供應目錄」,並建立細菌抗藥預警制度。 管理辦法將於2012年8月起正式施行,一般預料將有助於改善中國抗菌藥物濫用的現象,然用藥限制也必定衝擊現今許多對抗菌藥物產品銷售已存有高度依賴性的企業;相反地,由於管理辦法中明文將「具有抗菌作用的中醫製劑」排除於管制範圍外,或許將促成抗菌中醫藥品的發展契機,而值得持續觀察之。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國商務部提出CHIPS護欄條款,對受補助者實施限制以維護國家安全美國商務部於2023年3月21日對《晶片與科學法》(CHIPS Act)獎勵計畫中的國家安全護欄條款(guardrails)提出法規草案預告(Notice of Proposed Rulemaking, NPRM),並對外徵詢公眾意見,確保美國和盟友間的技術協調合作,促進共同國家安全利益。CHIPS作為國家安全倡議,以重建和維持美國在全球半導體供應鏈中的領導地位為目標,並確保CHIPS所補助的資金及尖端技術,不會直接或間接使中華人民共和國、俄羅斯、伊朗和北韓等特定國家受益或用於惡意行為,若CHIPS受補助者參與限制交易,政府可以收回全部資金補助。護欄條款對受補助者實施限制說明如下: 1.限制在特定國家擴張先進設施:自獲得補助起10年內,禁止對特定國家或地區的尖端和先進半導體設施為重大投資、協助擴大半導體製造能力。投資金額達100,000美元定義為重大交易,將設施生產能力提高5%為擴大半導體製造能力。 2.限制在特定國家擴建傳統設施:禁止在特定國家擴充半導體新生產線或將傳統半導體設施的生產能力擴大超過10%。若半導體設施的產出「主要服務」於該國國內市場(超過85%),則允許建造新的傳統設施,但最終產品只能在該國家或地區銷售。 3.半導體屬對國家安全至關重要項目:擬將一系列晶片歸類為涉及國家安全,並與國防部和情報局協商制訂清單管制,包括用於量子運算、輻射密集環境,和其他專業軍事能力的新進和成熟製程晶片。 4.加強美國出口管制:透過出口管制和CHIPS國家安全護欄條款,調整對儲存晶片的技術門檻限制並加強控制。對邏輯晶片應用,會設定比出口管制更加嚴格的門檻。 5.限制聯合研究和技術授權:限制與特定外國實體就引起國家安全問題的技術或產品進行聯合研究和技術授權工作。聯合研究定義為由兩人或多人進行的任何研究和開發,技術授權為向另一方提供專利、營業秘密或專屬技術的協議。
論專利公開前機密管理之重要性美國德州第一上訴法院於2023年8月的一項裁決強調了以下重點—即便企業的智慧財產權戰略是圍繞在專利申請而建立的,仍應證明其有在專利公開前採取到位的營業秘密保護政策。 在FMC Technologies, Inc. v. Richard Murphy and Dril-Quip, Inc.一案中,FMC是一家石油與天然氣公司,而Murphy是其前首席工程師,可接觸FMC公司重要研發技術。兩者的關係於2018年惡化,同年12月FMC公司提出了ITW系統(orientation-free subsea tree system)的專利申請,Murphy則於隔年5月收到Dril-Quip公司的錄用通知。離職時Murphy有簽署一份協議,承認其有義務為FMC公司持有的專屬資訊保密,並已將所有與工作相關的資訊歸還。 Murphy於Dril-Quip公司被任命負責開發與ITW系統幾乎相同的競爭產品。2020年5月,Dril-Quip公司於海上技術會議發布其下一代海底採油系統(VXTe Subsea Tree)的相關內容,並宣布將商業化生產。據此,FMC公司控訴Murphy使用其花費了多年時間和數百萬美元開發的營業秘密資訊。Dril-Quip公司則辯稱FMC公司所謂的營業秘密可輕易透過一般管道查明,且其未採取合理的努力來防止營業秘密外洩。 在判斷FMC公司是否有採取合理保密措施時,德州第一上訴法院針對其於專利尚未公開及等待核准審定期間是否有採取合理的努力進行審查,並發現下列情形: 1. FMC公司並未根據有存取該機密資訊需求的人設定權限,反而將其工程資料庫開放給所有公司內部的工程師,讓他們都可以遠端存取相關資料。 2. FMC公司並未禁止員工將公司的機密文件複製到外部伺服器上。 據此,德州第一上訴法院認定FMC公司於專利公開前未妥善保護其營業秘密,並認為被告Murphy未不當使用其營業秘密。最終,德州第一上訴法院判被告Murphy勝訴。 由上述裁決可以發現,企業在專利公開前仍應採取營業秘密保護政策,包括:(1)對機密資訊存取的權限控管、(2)規範對機密資訊的使用程序、規定等,以避免在訴訟中失利。關於前述之管理措施,可以參考資策會科法所創意智財中心發布的《營業秘密保護管理規範》,以了解如何降低自身營業秘密外洩之風險,並提升競爭優勢。 本文同步刊登於TIPS網站(https://www.tips.org.tw)