美國眾議院本(9)月通過「2007年綠色化學研究發展法案」(The Green Chemistry Research and Development Act of 2007),其目的在要求總統建立「綠色化學研究發展計畫」(Green Chemistry Research and Development Program),統籌改善聯邦政府對於綠色化學研發、教育宣導及技術移轉等活動之資源投入,而綠色化學則是指那些依安全與有效生產程序製造高品質產品時、能減少使用或產生毒性化學物質之化學產品或製程技術。美國化學協會(American Chemical Society)讚許眾議院通過本法案是睿智的舉動,表示發展綠色化學最能證明經濟和環境得同時併進,發展綠色企業實務,改善藥學加工及本土營建產業以迎刃氣候變遷及能源危機等挑戰。
本法案並要求自明(2008)年起,編列經費由以下政府單位合作執行本計畫,即國家科學基金(National Science Foundation)、國家標準技術研究院(National Institute of Standards and Technology)、能源局(Department of Energy)及環保署(Environmental Protection Agency)。參議院在過去兩屆都通過類似的法案,尚等待參議院支持通過相同法案,以獲得生效。
為減低對石化原料的依賴、發展生物經濟,美國政府積極投入促進綠色科技、生質科技之研發活動,例如從農林廢棄物或副產品或其他來源開發再生性原物料供綠色化學使用。此外,美國政府亦資助建立了生質(biomass)能源及產品的網路圖書館(BioWeb);BioWeb所收錄的生質科技資訊、文獻,許多都是來自大學或國家實驗室著名研究人員,都會先經各領域專家進行嚴格的同儕審查(peer-review),再開給所有公眾瀏覽;BioWeb將會持續蒐羅各種基礎及應用科學知識,並擴充各種經濟及政策相關資訊。BioWeb的理想目標,是擴大規模成為最大最有價值的生質燃料、能源及產品公共資料庫。
本文為「經濟部產業技術司科技專案成果」
美國眾議院在今年9月7日,表決通過「2007年專利改革法案(The Patent Reform Act of 2007)」,由於該法案中有部分內容,如:申請優先制度與賠償數額的計算標準等內容,預計將影響美國專利制度發展與未來法院關於專利訴訟案件的進行,因此引發各界專注。 此次眾議院通過的「2007年專利改革法案」重點在於修改專利案件中關於侵權賠償的計算標準,將以該專利對整體產品的貢獻度為主,做出適當的賠償數額。另外還有限制上訴地點的提出等,而且其中影響最大的改採「申請優先制度」(First-to-File System)。 目前美國專利制度採行是所謂的「發明優先制度」(First-to-Invent System),但未來依據「2007年專利改革法案」的內容,將轉變為世界各國採行的「申請優先制度」,故被稱為是美國專利制度50年來最重大的變革。 本項法案的通過,各界正反面的意見都有,支持的人說這項法案的內容可以遏止專利訴訟的濫用,使企業間的經濟活動得以正常發展。但是反對的人認為,限制賠償數額、上訴地點等,將使利用專利為惡的人更形囂張,削弱專利保護的機制,反而會阻礙美國甚至是世界各國的專利制度發展。
為促進健康資通訊科技之創新,美國嘗試立法重新定義健康軟體美國參議院認為健康資通訊科技(Healthy Information Technology)的創新與快速發展已經漸使現行法制不合時宜,美國食品藥物管理局(The US Food and Drug Administration)過度嚴格管制健康資通訊科技產品,甚至以法律強加健康資通訊業者不必要的負擔,恐抹殺新產業的創新能量,因此有必要對相關管制法規予以鬆綁。遂立法提案重新定義健康相關軟體,稱為「防止過度規範以促進照護科技法案」(The Prevent Regulatory Overreach To Enhance Care Technology Act of 2014,以下簡稱PROTECT Act)。 健康資通訊科技是目前創新與發展最快的美國產業。單以健康資通訊科技產業中,與健康相關的手機應用程式(application,APP)之開發,在全球經濟已創造數億美金的產值,在美國一地更提供了將近50萬份的工作機會。然而,在現行法制中食品藥物管理局認為健康相關的手機應用程式等軟體被廣泛應用於醫療行為的資訊蒐集,因此應當被視為醫療行為的一環。依據聯邦食品藥物及化妝品法(TheFederal Food, Drug and Cosmetic Act,FD&C Act)之規定,健康資通訊科技產品被界定為醫療器材(Medical Devices),而健康管理APP、行事曆APP、健康紀錄電子軟體等低風險產品亦包含在內,都必須嚴格遵守醫療器材相關行政管制。在PROTECT Act中將風險較低的健康資通訊科技產品重新定義為臨床軟體(Clinic Software)與健康軟體(Healthy Software)兩種態樣,其共通點在於明白區分出單純提供市場使用,不影響人體或動物醫療的健康資訊蒐集與直接提供實際臨床診斷,如放射線影像或醫療器材軟件的差異,PROTECT Act所定義之臨床軟體與健康軟體即屬於前者,故排除適用FD&C Act中醫療器材之定義範圍,得免除相關行政管制。
英國為救受Covid-19影響之小型企業成立簡易辦理之復興貸款計畫新冠病毒業務中斷貸款計畫(CORONAVIRUS BUSINESS INTERRUPTION LOAN SCHEME,CBILS)係因應疫情於3月23日由隸屬於英國政府之英國商業銀行(British Business Bank為推動中小型企業發展之政策性銀行)所提供八成信用擔保的中小型企業紓困貸款計畫,但承辦銀行授信緩慢或不願承貸,導致成效不彰飽受批評。 英國商業銀行正視小型企業具規模小、缺少抵押物、信用不足、營業資訊不透明及缺乏與銀行間的往來紀錄之特徵,易有不易通過授信徵審,難以獲得融資紓困之問題。業於5月4日另行啟動復興貸款計畫(BOUNCE BACK LOAN SCHEME,BBLS),小型企業只需於受理該計畫之承貸銀行網站填寫1份簡易申請表,輸入公司名稱、地址、公司註冊編號、2019年之預估年營業額與銀行代碼跟帳號,即可申請承貸金額為2,000英鎊以上,最高至企業營業額之25%(上限為50,000英鎊)之六年期之小規模貸款,該貸款提供十成擔保,銀行無需進行授信評估,亦不得要求小型企業進行任何其他形式之個人擔保,BBLS開放至今僅一週,申請件數已高於CBILS。 我國中央銀行之小規模營業人簡易申貸方案以十成信用提供小額貸款,與BBLS相似,惟我國小規模營業人簡易申貸方案採取簡易評分表進行審核,評分表內仍就負責人個人信用及不動產擔保設定進行分數評比,與英國無須進行授信評估頗有差異,雖我國受疫情影響程度未如英國嚴重,但小規模營業人仍受有衝擊,兩國之小額貸款同為十成擔保,我國或可參酌英國授信放寬之作業,提供小規模營業人更寬一點、快一點、方便一點的活水挹注,使小規模營業人度過疫情難關及加速復甦。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。