資通安全法律案例宣導彙編 第3輯

刊登期別
2004年06月編印
 

相關附件
※ 資通安全法律案例宣導彙編 第3輯, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2371&no=55&tp=1 (最後瀏覽日:2026/02/16)
引註此篇文章
你可能還會想看
政府科研計畫執行與貪污犯罪

以自己姓氏Chanel作為髮廊名稱引發商標侵權訴訟

  如同一般事業經營者,位於印地安那州的一名女士Chanel Jones(以下簡稱Jones),以自己的姓氏Chanel作為自營髮廊的名稱”Chanel’s Salon”。然而這看似普遍平凡的舉動卻引來令Chanel Jones始料未及的訴訟爭議。   今年(2014)8月Chanel Inc.(以下簡稱Chanel公司)對Jones提起訴訟,主張Jones違反商標法及不公平競爭法,剽竊Chanel公司長期耕耘的品牌名氣、識別度及良好商譽,其行為可能造成消費者錯誤連結印象認為Chanel公司是Jones開設髮廊的經營者或贊助者,並請求法院判決禁制令禁止Jones使用其名Chanel作為髮廊名稱。   根據Chanel公司的起訴書,Jones兩年前開始使用Chanel’s Salon作為髮廊名稱,而2013年7月開始Chanel公司寄給Jones停止侵權通知書(cease-and-desist letter)要求他不得再將Chanel出現於其髮廊名稱中,隨後又再度寄了四封追蹤/跟催信(follow-up letter),但Jones始終未作任何回應,所以Chanel公司才於今年提起訴訟。   經歷了數月之後,於今年12月16日,Jones於此商標戰中屈服,當庭與Chanel公司達成和解,法官作出和解決定書(consent judgment),和解決定書中載明永久禁止Jones再使用其姓氏Chanel於髮廊名稱,並且於2015年2月15日前將所有提及Chanel的內容全部移除。雙方並且於簽定的和解判決書中認定使用Chanel名稱是侵犯Chanel公司商標權的行為。   值得一提的是,如同起訴狀內容,此和解決定書中亦特別謹慎正視Chanel是Jones姓氏的這個事實。內容提及並非Jones再也無法使用自己的姓名於任何個人且非商業性的場合或用來識別指稱自己,只要Jones使用其姓名的行為不會產生任何與Chanel公司密切關連或關係的隱含。   Chanel公司大動作維權行為並非首舉,事實上這個擁有105年歷史的精品時尚品牌不僅早於1924年開始就陸續申請註冊商標,一直以來也非常積極維護其品牌商標權,從一系列的維權舉動似乎也可看出百年品牌對於商標保護的重視,透過商標侵權的制止、商標權利的維護,堅定地捍衛其品牌於精品時尚業屹立不搖的地位。

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

M2M時代下的資料保護權利之進展-歐盟與日本觀察

TOP