Codex研提進口食品含有未經核准之GMO含量的技術指導原則

  由聯合國農糧組織及世界衛生組織共同成立的The Codex Alimentarius Commission (Codex),刻正研提一份與GMO有關的重要技術指導原則,以協助各國評估並管控進口食品是否含有未經核准的GMO或由未經核准的GMO所製程的風險,藉此降低食品貿易的障礙。

 

  關於未經核准的GMO,目前歐盟採取的零容忍度政策(zero-tolerance policy),亦即,進口之食品或飼料中,絕對不能含有未經核准的GMO或由未經核准的GMO所製程,至於一般所知的歐盟0.9%的GMO標示義務,是適用在經依法核准上市的GMO,若因技術上不可避免的原因而使非基改產品含有此GMO之可容忍界線。

 

  根據Codex調查,許多GMO的上市審查在歐盟受到延宕,但這些GMO在歐盟以外其實很多都已經被其他國家核准,或歐盟的技術審查單位—食品安全管理局(European Food Safety Authority, EFSA)也已提出正面的安全評估意見,但歐盟執委會卻遲遲未完成行政審查,造成在歐盟進口的食品或飼料中若含有這些GMO,即被認定為未經核准而影響產品之進口。

 

  鑑於歐盟的GMO管理與出口國的GMO管理有重大的制度面差異,Codex認為此一制度面的衝突若不尋求解決,未來將越演越烈,影響的作物範圍也會越來越廣,因而Codex才會思考制定相關的技術指導原則,解決某GMO可能在一個或多個國家已經被核准上市,但在進口國還未經核准上市,而進口非基改食品或飼料中卻含有這些GMO的問題,目前Codex預計在2008年7月提出相關的技術指導原則建議。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ Codex研提進口食品含有未經核准之GMO含量的技術指導原則, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2386&no=55&tp=1 (最後瀏覽日:2026/02/05)
引註此篇文章
你可能還會想看
從匯流看我國電信與廣播電視產業之法律規範

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

東協-澳洲高峰會後發表雪梨宣言:倡議網路安全、智慧城市以及數位貿易

  首屆東南亞國協澳洲高峰會(ASEAN-Australia Summit)於2018年3月18日落幕,各國領袖達成共識並聯合發表雪梨宣言(Sydney Declaration),宣言內容談到未來東協與澳洲間之戰略夥伴關係、推動區域經濟之整合以及在複雜的區域議題上(包含網路、海事、移民)提升合作關係。   首先,在倡議網路安全(Cybersecurity)議題上。網路安全的威脅乃是全球性的,且在現今許多技術的應用上都會加劇這個問題的嚴重性。而社群媒體以及加密通訊軟體的使用對於所有人而言都將會是一個挑戰,故為深化網路安全之合作,各國將承諾共同致力促進一個開放、安全、穩定、便利、友善的ICT環境。於現行的國際法制基礎下促進網路空間的國際穩定、培養合作能力、確實建立信任措施以及自願而不具拘束力之行為規範。此外,澳洲與東協簽訂共同打擊國際恐怖主義備忘錄(Memorandum of Understanding (MoU) on Cooperation to Counter International Terrorism),以打擊恐怖及暴力極端主義,其中合作內容即包含有網路情報交流、提供能力建構方案以幫助偵查及打擊恐怖活動等。   次之,在東協-澳洲智慧城市倡議(ASEAN-Australia Smart Cities initiative)議題上。澳洲總理Malcolm Turnbull宣布將在五年內投資3000萬澳幣於強化澳洲與東協發展智慧、永續之城市設計的合作計畫,並且將更進一步促進區域經濟整合與繁榮。澳洲將向東協提供教育、培訓、技術援助及創新支援並投資發展永續性都市化之研究。在綠色基礎設施、水資源管理、再生能源、創新科技技術、數據分析以及交通運輸上,澳洲願意共享經驗與知識。此外,澳洲與東協亦將合作開發一系列高效能的基礎設施項目,以吸引私人及公共投資並改善區域連通性,更進一步實踐智慧城市之目標。   第三,在倡議數位貿易(Digital trade)議題上。澳洲政府宣布將與東協十國共同推動數位貿易並支持該地區經濟的包容性成長。數位科技在全球迅速普及,並為政府、消費者、企業提供了機遇,特別是針對微型、中小企業,它帶來了新興數位交易機會、就業機會、投資機會以及提高生活水準,然而數位化的好處並不代表公平分享。而統一數位貿易之國際標準將有助於消除企業進入區域市場之阻礙以及創造新的就業機會及發展,此一舉措將幫助東協落實其在資料經濟政策上主要優先之處理事項。

美國網路安全暨基礎設施安全局(CISA)發布《工控資安基礎:適用於擁有者與營運者的資產清冊指引》

美國網路安全暨基礎設施安全局(CISA)於2025年8月13日發布該機關與美國、澳洲、加拿大、德國、荷蘭、紐西蘭等國共計八個國安資安相關機構,合作訂定之《工控資安基礎:適用於擁有者與營運者的資產清冊指引》文件,旨在針對易受惡意網路行為攻擊且提供重要服務的能源、水務、製造業及其他領域關鍵基礎設施營運技術(Operational Technology,OT)系統,協助其資產擁有者與營運者建置與維護完整的OT資產清冊,並輔以OT分類體系(Taxonomy)。 OT資產清冊範圍涵蓋組織OT系統與相關軟、硬體,該指引主要說明OT資產擁有者與營運者建置與維護OT資產清冊的流程,包含: 1. 定義清冊範疇與目標(Define Scope and Objectives) 2. 辨識資產及蒐集屬性資料(Identify Assets and Collect Attributes) 3. 建立分類體系(Create a Taxonomy to Categorize Assets) 4. 管理與蒐集資料(Manage and Collect Data) 5. 實現資產全生命週期管理(Implement Life Cycle Management); 此外透過OT分類體系可幫助區分優先序、管理所有OT資產,有助於風險識別、漏洞管理,以及資安事件應變;有關如何建立OT分類體系,該指引亦提供流程建議如: 1. 根據功能及關鍵性執行資產分類(Classify Assets) 2. 對資產功能類型與其通訊路徑進行分類(Categorize (Organize) Assets and their Communications Pathways) 3. 建構體系架構與互動關係(Organize Structure and Relationships) 4. 驗證資產清冊資料準確度與圖像化(Validate and Visualize) 5. 定期檢查並更新(Periodically Review and Update) 該指引認為,建置OT資產清冊並輔以OT分類體系對期望建立現代化防禦架構的擁有者與營運者而言至關重要。透過上述作為,資產擁有者與營運者得以識別其環境中應加以防護及管控的關鍵資產,並據以調整防禦架構,建構相應的資安防禦措施,以降低資安事件對組織任務(Mission)與服務持續性(Service Continuity)的風險與影響。該指引亦強調關鍵基礎設施之OT與IT(資訊技術)部門間之跨部門協作,並鼓勵各產業組織參考指引步驟落實OT資產盤點與分類,以提升整體關鍵基礎設施資安韌性。

TOP