美聯社(The Associated Press, AP)於十月九日在「南紐約聯邦地方法院」(SDNY),正式地向世界權威的數碼核證服務供應商VeriSign及其子公司Moreover Technologies提出違反著作權與商標權等侵權訴訟。根據AP向法院所提出的起訴狀中主張七項訴因,內容以被告違反聯邦著作權法及紐約州的商標法等相關法律規定,其中包含VeriSign及Moreover Technologies製造出與AP的虛偽聯結( False Association)而違反了商標法案-Lanham Act等。AP在起訴狀中也主張因被告上開侵權行為及非法侵入AP的電腦主機而違反紐約州「非法侵入他人動產罪」(Trespass to Chattels)之行為,故同時請求聯邦法院准予核發永久禁止令,以禁止被告使用AP所有的新聞報導內容並刪除被告公司電腦內所有屬於AP所有之著作財產權。
本案被告之Moreover Technologies最早標榜透過網路新聞的搜集、分類及傳送的方式,成為提供即時新聞、當前知識及商業資訊之先驅,其在該公司的網頁上使用AP所有超過兩萬五千筆的新聞內容。而同案被告VeriSign,於二○○五年十月份以約略美金三千萬的現金將Moreover Technologies合併。AP的總裁暨執行長Tom Curley表示,任何未得AP之授權同意而自行搭載(Free Riding)使用AP所有之新聞內容之人,其行為已對新聞記者的著作財產權造成莫大的損失,AP從成立至今,已有三十二各新聞記者因公殉職。基於上開理由,AP向法院請求被告因侵權所獲得之利益及懲罰性損害賠償。
英國資訊委員辦公室(Information Commissioner’s Office, ICO)於今(2019)年4月15日發布「合適年齡設計:網路服務行為準則」(Age appropriate design: a code of practice for online services)諮詢報告,針對18歲以下孩童使用網路服務所涉及個人資料之相關議題提出遵循標準,要求網路服務提供商應受遵循以保障孩童隱私資訊。 本次諮詢報告主要針對網路服務如何適當確保孩童個人資料,同時符合歐盟《一般資料保護規則》(General Data Protection Regulation, GDPR)以及《隱私及電子通訊規則》(Privacy and Electronic Communications Regulations, PECR),若網路服務提供商未依循該行為準則,將很難證明符合GDPR、PECR規定,ICO亦採取監管措施(regulatory action),包含警告、譴責、執行通知、罰款等。於諮詢報告中,臚列涉及個人資料事項,包括資料共享、地理定位(geolocation)、家長監控(parental controls)、輕推技術(nudge techniques)、默認裝置(default settings)、側寫(profiling)等多達16項遵循標準,其中輕推技術引發抑制網路科技發展、過度監管爭議。 所謂「輕推技術」是指專為引導用戶或鼓勵用戶決策時可以點選之程式以表示用戶想法,簡而言之Facebook、Instagram按「讚」功能、社群軟體Snapchat「Streaks」互動功能,或是新聞網頁常見「是」或「不是」選擇性問題視窗等即是輕推技術應用。由於輕推技術之設計會蒐集用戶瀏覽網頁習慣,甚至透露其個人性格、生活狀態給廣告商或社群媒體等。 諮詢報告指出,依據GDPR前言第38點規定,因孩童對於其個人資料處理之可能風險、結果及相關保護措施及其權利認知較低,同時依GDPR第5條規定個人資料之蒐集處理與利用,對資料主體者應為合法、公正及透明(lawfulness, fairness and transparency)。但輕推技術的運用將會促使資料主體者更容易地提供其個人資料,同時,尤其會誘導兒童去選擇隱私保護較低的選項設定或花費更多時間在這些服務上,而此一技術之運用正是利用資料主體者之心理偏差(psychological bias),而違反了公平與透明原則。因此諮詢報告書要求網路服務提供商應主動限制孩童使用輕推功能。ICO於諮詢文件更詳細依0-5歲、6-9歲、10-12歲、13-15歲、16-17歲不同年齡層限制輕推技術應用之程度,或在何種情況須有家長陪同,以保障孩童隱私。 此項標準引來正反兩派意見,主張自由市場(free market)人士批評,認為有過度監管之嫌並阻礙科技發展,輕推技術本身不是問題,而是在於蒐集個人資料後要做那些運用,同時要如何執行限制技術之應用亦將是問題所在。而贊成者認為廠商如提供網路服務給所有年齡層時,應有特別措施以保護不同年齡層之人,因此對於孩童與成人間之監管程度應有區別。該諮詢報告於今(2019)年5月31日截止公眾諮詢階段,並預計2020年初施行該行為準則。
L'oreal v. eBay:歐盟法院判決網路平台交易業者應負商標侵權責任有關在網路販售仿冒品所透過之網路交易平台業者是否應負法律責任之問題,歐盟法院(Court of Justice of the European Union)於2011年7月12日針對L’oreal v. eBay案作出判決,認為如eBay之網路交易平台業者應為平台使用者之商標侵權行為負責。 國際知名化妝品品牌L’oreal 於2007年對eBay提出多項商標侵權之控訴,L’oreal認為eBay沒有適當的管控阻止其交易平台使用者之商標侵權行為,其包括在交易平台上販售仿冒品及非賣品,進行平行輸入販售非給歐盟市場流通之商品給位在歐盟會員國之人,以及購買網路關鍵字廣告協助交易平台使用者找到仿冒L’oreal品牌之商品,但eBay認為其適用歐盟電子商務指令(EU E-Commerce Directive)下之有關網路服務業者之免責條款。 歐盟法院之判決認為,網路交易平台業者若有扮演主動的角色,對仿冒商品之販售資料有掌控或知曉,則歐盟電子商務指令之免責條款應不適用,另外,若網路平台交易業者雖然沒有扮演主動的角色,但知道在其交易平台有商標侵權之販售行為但並沒有採取任何阻止行動,則網路平台業者也無法享有上述之免責權。同時,歐盟法院也認為各國法院應可以要求網路交易平台業者採取動作停止及防止交易平台使用者之侵權行為。
德國機器人和人工智慧研究人工智慧及機器人分為以下4種類型:首先是工廠裡的作業機器人,可自主性重複執行相同任務,例如拾取、放置、運輸物品,它們在侷限的環境中執行具體事務,而且通常是在周圍無人的圍籬區內作業,然而目前趨勢已有越來越多機器人可安全執行人機協作的任務。第二種係用在傳統製造外的專業機器人,例如:擠奶機器人、醫院手術機器人。第三種是生活中常見的消費產品機器人,常用於私人目的,例如:吸塵器機器人、割草機器人。最後是人工智慧軟體,此軟體可應用於醫療診斷輔助系統、語音助理系統中,目前越來越多人工智慧軟體結合復雜的感測器和聯網裝置,可執行較複雜之任務,例如:自動駕駛車。 德國人工智慧研究中心(Deutsche Forschungszentrum für Künstliche Intelligenz,DFKI)為非營利性公私合作夥伴(PPP)之研究機構,與歐盟,聯邦教育及研究部(BMBF)、德國聯邦經濟及能源部(BMWi),各邦和德國研究基金會(DFG)等共同致力於人工智慧之研究發展,轄下之機器人創新中心(Robotics Innovation Center,RIC)亦投入水下、太空、搜救、物流、製造業等各領域機器人之研究,未來將著重於研究成果的實際運用,以提升各領域之生產力。2016年6月,各界專家於德國聯邦議院的數位議程委員會中,呼籲立法者應注意機器人技術對經濟,勞動和社會的影響,包括技術及產品的安全標準、機器人應用之法律歸責問題、智慧財產權的歸屬與侵權問題,隱私權問題、及是否對機器人課稅等,進行相關修法監管準備。 解決台灣人口結構老化、勞動力短缺與產業競爭力等問題已是當務之急,政府為促進台灣產業轉型,欲透過智慧機械創新與物聯網技術,促使產業朝智慧化生產目標邁進。未來除需持續精進技術研發與導入產業業升級轉型外,應將人工智慧納入政策方針,並持續完備法制環境建構及提升軟實力,以確保我國技術發展得以跟上世界潮流。
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。