日本用老鼠複製人類腎臟

 

 

  日本慈惠醫科大學研究人員用人類幹細胞,植入實驗鼠胚胎中,培育出具有人基因的複製腎,能過濾尿液。


  研究人員先把生成腎臟的神經營養因子基因植入骨髓含有的幹細胞,然後在實驗鼠胚胎未生成腎臟前,將幹細胞注入胚胎中可生成腎臟的部位。隨後,研究人員摘出胚胎中相當於腎臟的部分。經過六天的培養,這部分組織長出了讓腎臟發揮功能的腎單位及其周圍的腎間質。基因檢查結果確認該腎臟是由人的骨髓幹細胞生成。研究人員再將這一"複製腎"移植到其他實驗鼠的腹部,約二周時間後,"複製腎"生長到一百五十毫克。


  利用骨髓幹細胞進行再生醫療,生成皮膚和軟骨等已經進入實用階段,但利用動物再生人類器官還沒有先例。參加研究的橫尾隆認為,從理論上說,用這種方法生成的器官不會發生排異反應。除腎臟外,這種方法還可用來生成胰腺和肝臟。

 

本文為「經濟部產業技術司科技專案成果」

※ 日本用老鼠複製人類腎臟, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=246&no=55&tp=1 (最後瀏覽日:2026/02/08)
引註此篇文章
你可能還會想看
歐盟《企業永續盡職調查指令》草案,將永續治理內化至企業經營

  歐盟執委會(The European Commission)於2022年2月23日發布《企業永續盡職調查指令》草案(Proposal for a Directive on corporate sustainability due diligence),其目的在於促進永續及負責任企業行為,並使企業將人權與環境考量內化至企業營運與公司治理。   本指令要求各歐盟成員國,須確保企業確實執行人權及環境盡職調查,具體要求企業之作為如下: (1) 將盡職調查納入公司政策(第5條); (2) 採取適當的措施,以鑑別企業自身或子公司於營運及其既有商業關係價值鏈之現有或潛在的不利衝擊(adverse impacts)(第6條); (3) 採取適當措施,預防及減緩潛在的不利衝擊,並消弭現有不利衝擊或縮小其影響範圍(第7、8條); (4) 建立並維持申訴制度,確保受前述不利衝擊影響或有相當理由信其將受影響之人、價值鏈中之工作者代表以及關注相關領域的民間社團等利害關係人之申訴管道暢通(第9條); (5) 定期針對自身及子公司之盡職調查政策及措施進行評估,以確保其有效性(第10條); (6) 企業須於每年4月30日前揭露盡職調查相關資訊,受《企業永續報告指令》(Corporate Sustainability Reporting Directive, CSRD)規範之企業須於企業年報中揭露,其他企業則須於企業網站揭露(第11條)。   另一方面,本指令也明定公司董事義務,依據第25、26條,董事於其決策過程須考量短、中、長期之人權、氣候及環境因素;企業亦須指定部分董事負責盡職調查相關治理作為,並定期向董事會進行報告。   適用本指令的歐盟企業有兩種:(1) 員工人數500人以上且全球年營業額1億5,000萬歐元以上之大公司;(2) 員工250人以上之且全球年營業額4,000萬歐元的高衝擊產業(如:紡織、農業、採礦業等)。另外,非歐盟企業若符合前述員工人數之要求,且於歐盟境內之營業額達到前述標準,亦適用本指令。

下一個要控告的是…其它所有公司?

  Eolas,一家由加州大學資助成立的軟體技術研發公司,於1999年控告微軟侵犯了一個關於瀏覽器技術的專利 – US 5,838,906。該專利所揭露的技術讓微軟的IE瀏覽器得以嵌入互動式內容的外掛(plug-in)程式。2003年,美國芝加哥法院認定微軟侵犯906專利,並判決微軟必需賠償Eolas及加州大學5.21億美元。2007年,微軟終於暫時與Eolas達成和解,但兩家公司都不願透漏和解的內容。     美西時間2009年10月6日上午,Eolas大動作地控告包含科技業的Adobe、Amazon、Apple、eBay、Google、Sun Microsystems、Texas Instruments、Yahoo、YouTube,以及非科技業的Citigroup、JPMorgan Chase …等共22家公司,侵犯上述906專利以及其所衍生的US 7,599,985專利。Eolas表示:「985專利是 906專利的延續,其所揭露的技術能讓網站透過附加元件和Ajax網頁開發技術的使用,為其線上服務加入完全互動式的嵌入應用軟體。」     此外,Eolas總裁Michael Doyle博士也表示:「我們只想獲得公平的對待。本公司在15年前就已經研發並廣泛的展示這些技術。使用本公司的技術來營利且未付出合理報酬的情形對本公司並不公平。」 至於被控告的大多數公司目前都尚未做出正式的回應。

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

美國發布網路事件協調準則

  隨著網路技術的進步,資安事件亦日益加增,為了因應日趨頻繁的網路攻擊,美國總統歐巴馬於2016年7月26日發布了對於美國資安事件發生時聯邦部門間協調之指令(PRESIDENTIAL POLICY DIRECTIVE/PPD-41),該指令不僅提出聯邦政府對於資安事件回應的處理原則,並建立了聯邦政府各部門間對於發生重大資安事件時之協調指引。   指令中就資安事件及重大資安事件進行了定義:資安事件包含資訊系統漏洞、系統安全程序、內部控制、利用電腦漏洞的執行;而重大資安事件則指可能對國家安全利益、外交關係、美國經濟、人民信心、民眾自由或大眾健康與安全發生明顯危害的有關攻擊。 此外,就遭遇資安事件時,列舉出下列幾點作為聯邦政府因應資安事件時之原則:(A)責任分擔;(B)基於風險的回應;(C)尊重受影響者;(D)政府力量之聯合;(E)促進重建及恢復。   聯邦政府機關於因應資安事件時,需同時在威脅、資產及情報支援三方面上做相關之因應。其中司法部透過轄下聯邦調查局(Federal Bureau of Investigation, FBI)、國家網路調查聯合行動小組(National Cyber Investigative Joint Task Force, NCIJTF)負責威脅之回應;國土安全部(Department of Homeland Security, DHS)則透過轄下的國家網路安全與通訊整合中心(National Cybersecurity and Communications Integration Center, NCCIC)負責保護資產之部分,而情報支援部分,則由國家情報總監辦公室(Office of the Director of National Intelligence)下之網路威脅情報整合中心(Cyber Threat Intelligence Integration Center)負責相關事宜。如係政府機關本身遭受影響,則機關應處理該資安事件對其業務運作、客戶及員工之影響。另在遭遇重大資安事件時,為使聯邦政府能有效率因應,指令指出聯邦政府應就國家政策、全國業務及機關間為協調。此外,指令中亦指示國土安全部及司法部應建立當個人或組織遭遇資安事件時得以聯繫相關聯邦機關之管道。   該指令加強了現有政策的執行,並就美國機構組織上於資安事件與現行政策之互動做了進一步之解釋。

TOP