陳水扁總統表示,行政院推動「加強生物技術產業推動方案」,將在5年內帶動1500億元投資、10年內成立500家以上生技公司,打造台灣成為亞太地區生技創投、研發以及營運中心。他期盼中研院基因體研究中心大樓加中研院頂尖研究團隊,如同承載台灣「兩兆雙星」中生技之星的「子彈列車」,引領台灣生技產業超越各國,奔馳在世界最前端。
陳總統表示,本世紀人類基因體序列的解碼,開創並主導了生技產業革命性的發展,展望未來,生命科學家所面臨的挑戰,將更著重於瞭解基因的複雜性、以及解析蛋白質結構與功能,並藉此發展新的生技醫療產品,以改良人類生活及生命品質。
有鑑於「基因與蛋白體研究」是全球廣泛重視的尖端科學,陳總統說,政府自2002年即進行「基因體醫學國家型計畫」,在各地籌建基礎設施和研發中心,而「中研院基因體研究中心」正是推展計畫的核心工程。他相信,這項重大投資將提供一個健全的研發環境及專業技術平台,協助台灣的生技產業掌握市場利基,進而落實行政院在「加強生物技術產業推動方案」中所訂定各項發展目標。
本文為「經濟部產業技術司科技專案成果」
在今(2021)年1月21日,歐洲數個科技公司、非營利組織與研究機構等民間單位共同發起「現今資料主權」聯盟(Data Sovereignty Now,DSN),宣布將向歐洲各級決策者施加壓力,以確保資料(data)之控制權掌握在生成資料的個人和組織手中。該聯盟認為歐盟執委會應採取決定性之措施,對於在歐洲所生成之資料,應以資料主權原則為基礎,以確保生成資料之個人和組織對其有控制權,以利數位經濟。 而在2020年12月初,澳洲政府首開全球先例提出一新法案,要求Google與Facebook等平台應向澳洲在地媒體支付新聞內容費用,要求雙方進行協商,商討在其平台上顯示之新聞內容所應支付之費用,倘無法達成協議,則由政府之仲裁員決定應支付之金額。此法案引發Google與Facebook高度反彈,不惜以不繼續在澳洲提供服務或停止連結(link)當地媒體之新聞報導作為反擊,要求澳洲政府撤回或修改該法案;然DSN聯盟則認為,Google與Facebook利用其市場主導地位來向澳洲政府施加壓力,正是濫用其資料壟斷權(data monopoly)與壟斷地位之典型例子,為防止科技巨擎將來繼續以此方式勒索政府之唯一方法,即是恢復使用者與平台間之「數位利益平衡」。而Google似有讓步之跡象,根據路透社報導,Google分別已與兩家當地媒體達成協議,將各支付每年3000萬澳幣之費用。該法案是否會如期通過,進而改變或影響此類大型平台與各國政府間資料主權之角力關係,值得持續關注。
美國著作權局拒絕人工智慧創作品之著作權申請2022年2月14日,美國著作權局(US Copyright Office)所屬之著作權審查委員會(Copyright Review Board),做出一件人工智慧(AI)創作作品不得申請著作權登記之決定,並聲明人類作者是著作權保護的必要前提。 本案申請人Stephen Thaler在2018年首次嘗試為AI「Creativity Machine」創作的藝術作品申請著作權登記,Stephen將Creativity Machine列為作者,並聲明其因擁有該AI而得透過美國著作權法第201條(b)項的受雇著作原則(work for hire)取得前述作品之所有權,且得為此作品申請著作權登記。然而,Stephen提出的申請沒有成功,著作權局認為依著作權法及相關判例,非出自於人類所作之作品不應受著作權保障,而本案AI之創作作品亦無人類的創意性投入或干預。在Stephen提出兩次複審後,著作權審查委員會在2022年做出機關最終決定,除重申僅人類之作品得受著作權保障以外,更進一步表示無權利能力的AI無法簽訂契約,故無受雇著作原則適用之可能。此外,著作權審查委員會亦指出受雇著作原則亦僅能表彰作品的所有權,並非作品是否得以受著作權保障之指標。 Stephen Thaler長年來不斷為AI之創作品爭取法律保護,除上述著作權外,其亦將名為DABUS的AI列為專利發明人,並以此就DABUS之發明在多個國家申請專利,而澳洲聯邦法院在2021年7月做出全球首個認為AI可作為專利發明人的判決。
IBM Watson Health與FDA合作研究區塊鏈技術之醫療運用根據專利資料庫公司IFI CLAIMS公佈2016年美國專利統計報告,IBM以8,088件專利再度蟬聯冠軍,其中多著重在人工智慧(artificial intelligence)、認知運算(cognitive computing)、及雲端(cloud)等技術領域,也有健康醫療相關專利。 近期IBM Health與美國食品藥品管理局(U.S. Food and Drug Administration)展開兩年期之合作研究,透過區塊鏈技術(blockchain)以安全且去中心化的方式進行數據共享,如:交換電子病歷、臨床試驗、基因數據、甚至過去難以取得的病患行動與穿戴裝置數據及物聯網(Internet of Things)數據等。 傳統上病患的病歷資訊存放於各診療單位或醫療機構,造成資訊管理效率及互通性較低,在區塊鏈技術的架構下,有效率的將大量且多樣的醫療數據進行彙整,並藉審查追蹤紀錄以防止竄改,提升病歷數據傳輸管理的可靠性及安全性。在如此多元化的醫療數據共享環境下,有助於醫療診斷、更將能促進產業發展。 此外,過去病患穿戴裝置所測得的日常生理數據,不管在數據取得、或將該些數據應用至臨床診斷上皆存有許多問題,如今區塊鏈技術將能提高物聯網數據資訊之整合性。依調查顯示,預計有80%新創組織採用區塊鏈技術於物聯網數據管理與應用上。 其他應用商機更包括居家監控、慢性疾病管理、藥物整合(medication reconciliation)及供應鏈管理等。IBM預估,至2017年底將會有16%的健康醫療機構採用以區塊鏈技術為架構的管理工具,並預測十年內採用比例將達72%。 本文同步刊登於TIPS網站(https://www.tips.org.tw)」
新加坡個人資料保護委員會2017年7月發布資料共享指引新加坡個人資料保護委員會(Personal Data Protection Commission, PDPC)於2017年7月27日發布資料共享指引(GUIDE TO DATA SHARING),該指引協助組織遵守新加坡2012年個人資料保護法(Personal Data Protection Act 2012, PDPA),並提供組織內部和組織之間的個資共享指引,例如得否共享個資,與如何應用,以確保符合PDPA共享個資之適當方法;並得將特定資料共享而豁免PDPA規範。該指引共分為三部分,並有附件A、B。 指引的第一部分為引言,關於資料共享區分為三種類型探討: 在同一組織內或關係組織間共享 與資料中介機構共享(依契約約定資料留存與保護義務) 與一個或多個組織共享(在不同私部門間、公私部門間) 共享包含向一或多組織為利用、揭露或後續蒐集個資;而在組織內共享個人已同意利用之個資,組織還應制定內部政策,防止濫用,並避免未經授權的處理、利用與揭露;還應考慮共享的預期目的,以及共享可能產生的潛在利益與風險。若組織在未經同意的情況下共享個資,必須確保根據PDPA的相關例外或豁免之規定。 指引的第二部分則在決定共享資料前應考慮的因素: 共享目的為何?是否適當? 共享的個資類型為何?是否與預期目的相關? 在該預期目的下,匿名資料是否足以代替個資? 共享是否需要得同意?是否有例外? 即使無須同意,是否需通知共享目的? 共享是否涉及個資跨境傳輸? 上述因素還能更細緻對應到附件A所列應思考問題,附件B則有相關作業流程範例。 指引的第三部分,具體說明如何共享個資,與資料共享應注意規範,並提供具體案例參考,值得作為組織遵守新加坡個人資料保護規範與資料共享之參考依據。