陳水扁總統表示,行政院推動「加強生物技術產業推動方案」,將在5年內帶動1500億元投資、10年內成立500家以上生技公司,打造台灣成為亞太地區生技創投、研發以及營運中心。他期盼中研院基因體研究中心大樓加中研院頂尖研究團隊,如同承載台灣「兩兆雙星」中生技之星的「子彈列車」,引領台灣生技產業超越各國,奔馳在世界最前端。
陳總統表示,本世紀人類基因體序列的解碼,開創並主導了生技產業革命性的發展,展望未來,生命科學家所面臨的挑戰,將更著重於瞭解基因的複雜性、以及解析蛋白質結構與功能,並藉此發展新的生技醫療產品,以改良人類生活及生命品質。
有鑑於「基因與蛋白體研究」是全球廣泛重視的尖端科學,陳總統說,政府自2002年即進行「基因體醫學國家型計畫」,在各地籌建基礎設施和研發中心,而「中研院基因體研究中心」正是推展計畫的核心工程。他相信,這項重大投資將提供一個健全的研發環境及專業技術平台,協助台灣的生技產業掌握市場利基,進而落實行政院在「加強生物技術產業推動方案」中所訂定各項發展目標。
本文為「經濟部產業技術司科技專案成果」
行動寬頻使用人數已達1.2億,且估計每年將成長數億人口,許多研究估計2020年行動流量將比現在增加33倍。為了奪回全球手機領導者地位,歐盟不僅從2007年開始,投入超過三千五百萬歐元發展4G與4G以上的無線技術,歐盟執行委員會副主席Neelie Kroes於今年更宣佈將投入五千萬歐元研究5G通信(2013年~2020年)。 在現有的第七框架研究與發展計畫(Seventh Framework Programmefor research and development )中,歐盟已有8項關於5G的研究計畫。其中,以易利信(Ericsson)所主導的METIS(Mobile and wireless communications Enablers for Twenty-twenty Information Society),備受各界矚目。METIS的研究團隊來自共10個國家,涵蓋領域包括電信營運商、製造商、學術機構與商用軟體業者。METIS將進行網路拓樸(Network Topologies)、無線連結(Radio Links)與頻譜使用研究、以為歐洲建立一個5G的行動與無線通信系統。 目前,METIS對於未來整體目標是希望達到: 1.行動寬頻流量每單位面積能比現在高出1000倍,使網路營運商能同時服務更多消費者。 2.聯網設備比現在多出10倍至100倍。 3.行動寬頻使用速度將比現在高出10倍至100倍,觀看視頻將更為容易。 4.機器對機器通訊(Machine-to-Machine-Communications)的電池使用時間將多出10倍。 5.網路延遲的時間將會降低5倍。 雖然,5G發展僅為初期,而各歐盟會員也僅英國投入三千五百萬英鎊,但是,部分輿論從英國4G不斷延遲的例子,認為現在發展至少降低5G重蹈覆轍的可能性。
歐盟針對單一專利制度達成協議歷經多年的討論與僵持後,歐盟各國領袖於2012年6月29日宣布同意建立歐盟單一專利制度,並決定將單一專利法院分別設置於巴黎、倫敦與慕尼黑三個城市。 專利法院的設置地點一直為建立歐盟單一專利制度的最後爭議點,包括英國、德國與法國一直積極爭取單一專利法院設立在他們國家,最後於6月29日終於達成妥協,將單一專利法院分成三個地點:第一審法院中央部門之主要位置將設立於法國巴黎,而法院的第一任院長也將會由法國人擔任,英國倫敦及德國慕尼黑也將分別設立部門,以因應專利訴訟案件的特殊性質,英國倫敦將負責處理跟化學藥學生命科學相關之專利案件,德國慕尼黑則負責處理跟機械工程相關之專利案件。而歐盟單一專利的核發將由歐洲專利局(European Patent Office)負責。 單一專利制度協議僅有25個歐盟國家同意,西班牙及義大利目前選擇不加入,原因是這兩個國家不滿西班牙文及義大利文都沒有被納入為單一專利制度之官方語言,只有法文、德文及英文被訂為單一專利制度之官方語言,西班牙及義大利認為這樣的安排將為位於法國德國及英國的企業帶來不公平的優勢。 此項協議現在將進入歐盟議會進行表決,預計於2014年就可以開始核發歐盟單一專利。
演算法歧視將適用於《紐澤西州反歧視法》2025年1月9日美國紐澤西州檢查總長與民權部(Division of Civil Rights, DCR)聯合發布「演算法歧視指引」(Guidance on Algorithmic Discrimination and the New Jersey Law Against Discrimination),指出《紐澤西州反歧視法》(the New Jersey Law Against Discrimination, LAD)亦適用於基於演算法所衍生的歧視。 隨著AI技術日趨成熟,社會各領域已大量導入自動化決策工具,雖然它們能提高決策效率但也增加了歧視發生之風險。指引的目的在於闡述自動化決策工具在AI設計、訓練或部署階段可能潛藏的歧視風險,亦列舉出在各類商業實務情境中常見的自動化決策工具,並說明它們可能會如何產生演算法歧視。以下分別說明《紐澤西州反歧視法》適用範圍,以及與演算法歧視有關的行為樣態。 一、《紐澤西州反歧視法》之適用主體及適用客體 《紐澤西州反歧視法》禁止在就業、住房及公共場所等領域所發生的一切歧視行為,其適用主體相當廣泛,包含但不限於下列對象:雇主、勞工組織、就業仲介機構、房東、房地產經紀人、公共場所之經營或管理者、以及任何教唆或協助歧視行為之個人;而該法之適用客體亦有明確定義,為具有受保護特徵(如性別、族裔、身心障礙等)之自然人或法人。 此外指引特別說明,即便適用主體無意歧視、或其所使用之自動化決策工具係由第三方所開發,只要發生歧視行為依然違反《紐澤西州反歧視法》。這是因為《紐澤西州反歧視法》係針對歧視所帶來的影響進行規範,儘管無意歧視,其所帶來的影響並不一定比故意歧視還要輕微。 二、 歧視行為的三種樣態 1.差別待遇歧視 差別待遇歧視係指適用主體基於受保護特徵而對適用客體施予不同對待。舉例而言,若房東使用自動化決策工具來評估黑人潛在租戶,但不評估其他族裔的潛在租戶,則會因為其選擇性使用自動化決策工具而構成歧視。 2.差別影響歧視 差別影響歧視係指適用主體的政策或行為對適用客體造成不成比例的負面影響,且該政策或行為未能證明具有正當性、非歧視性、或不存在較少歧視性的替代方案,則該政策或行為構成歧視。例如,某商店利用臉部辨識技術來偵測過去曾有偷竊紀錄的顧客,但該系統對配戴宗教頭巾的顧客較容易產生誤判,此亦可能構成歧視。 3.未提供合理調整 合理調整係指身心障礙者、宗教信仰者、懷孕者以及哺乳者,在不會對適用主體造成過度負擔的前提下,得向其提出合理請求,以符合自身的特殊需求。以身心障礙員工為例,若雇主使用了自動化決策工具來評估員工的工作表現(例如監測員工的休息時間是否過長),在未考量合理調整的情況下,該工具可能會過度針對身心障礙員工進而構成歧視。 為減少演算法歧視發生頻率,「演算法歧視指引」特別闡述自動化決策工具可能會出現的歧視行為及歧視樣態。此份指引的另一個意義在於,縱使目前紐澤西州並沒有一部監管AI的專法,但仍可以利用現行的法律去處理AI帶來的種種問題,以利在既有的法律架構內擴充法律的解釋來回應新科技的挑戰,並達到實質管制AI的效果。
日本公布設立AI安全研究所與著手訂定AI安全性評鑑標準日本於2023年12月1日舉辦G7數位技術委員會(G7デジタル・技術大臣会合),由日本數位廳、總務省、經濟產業省共同會晤G7會員國代表,基於人工智慧(Artificial Intelligence,下稱AI)可能帶給全球創造性、革命性的轉變,同時也可能伴隨侵害著作權與擴散假訊息的風險,尤其是生成式AI可能對經濟、社會影響甚鉅,因此針對如何妥善使用AI技術,G7全體會員國共同訂定《廣島AI進程》(広島AIプロセス)文件,其聲明內容簡述如下: 1.訂定涵蓋《廣島AI進程》之政策框架(Framework) 2.訂定涵蓋AI設計、系統開發、規劃、提供與使用等所有與AI有關人員,(All AI actors, when and as applicable, and appropriate, to cover the design, development, deployment, provision and use of advanced AI systems)適用之《廣島AI進程》國際標準(Principle) 3.針對開發高階AI系統之組織,訂定可適用之國際行為準則(Code of Conduct) 為此,日本內閣府於2024年2月14日公布,於經濟產業省政策執行機關—獨立行政法人資訊處理推動機構(独立行政法人情報処理推進機構,下稱IPA)轄下設立日本AI安全研究所(Japan AI Safety Institute,下稱AISI),作為今後研擬AI安全性評鑑標準(據以特定或減少AI整體風險)與推動方式之專責機構,以實現安心、安全以及可信賴之AI為目標。AISI所職掌的業務範圍如下: 1.進行AI安全性評鑑之相關調查 2.研擬AI相關標準 3.研擬安全性評鑑標準與實施方式 4.研擬與各國AI專責機關進行國際合作,例如:美國AI安全研究所(U.S. Artificial Intelligence Safety Institute, USAISI) 另一方面,IPA將以內部人才招聘作為AISI成員之任用方式,預計組成約數十人規模的團隊。日本以與G7會員國共識為基礎,採專責機關—AISI進行研究與規劃,並推動日後擬定AI相關使用規範與安全性評鑑標準,據以實現AI應用安全之目標。我國對於AI技術之應用領域,未來應如何訂定使用安全規範,將涉及專業性與技術性事項之整體性規劃,日本因應AI課題而採行的做法值得我國未來持續關注。