林口長庚醫院透過專案申請,已經完成10例「非親屬臍帶血移植」手術,病人術後狀況良好,都不需再輸血,有2人連抗排斥藥物都不需要。目前學界草擬的「臍帶血移植草案」已出爐,將放寬為常規手術,不過須審慎訂定符合手術的資格,開放與否還得再等。
林口長庚原本預計在2年內完成4例手術,結果半年內就完成,再度以專案申請,1年2個月下來共完成10例。參與的兒童醫院血液腫瘤科醫師江東和表示,參與試驗的病童,多為重度海洋性貧血,在臍帶血配對上,不那麼嚴格,術後恢復情形良好,加上家長口耳相傳,所以不斷有人希望透過此一途徑,救自己的孩子。
不過,林口長庚暫時無法再繼續「加班」,江東和表示經費是主因,這10例由於是試驗性質,醫療費用、門診追蹤費用,全由長庚的研究經費支付,不可能無限量供應。江東和表示院方對於臍帶血移植手術,累積的信心度很高,未來須視手術開放的程度,列為常規醫療還是專案申請,才能決定如何繼續這項治療方法。
本文為「經濟部產業技術司科技專案成果」
馬來西亞「內國貿易及消費事務部」( Domestic Trade and Consumer Affairs Ministry )部長 Datuk Shafie 在五月底舉行的智慧財產權研討會上表示,為加速法院審理智財權侵權案件的速度,以有效打擊此等違法行為,馬來西亞政府擬於 2007 年設立智慧財產權法院( Intellectual Property Court )。 近年來,馬來西亞政府持續修正智慧財產權相關法律以強化實務執法的效果,惟修法的成效相當程度取決於法官對於新法的學習及認知能力,此次設立智慧財產權法院將可培養專業法官以彌補目前法官在智慧產財權本職學能上的不足。 日本於 2004 年 6 月已通過「智慧財產權高等法院設置法」(知的財產高等裁判所設置法),新制並已於 2005 年 4 月正式實施;而我國亦於今年二月間審議通過「智慧財產法院組織法草案」及「智慧財產案件審理法草案」,目前已送請立法院審議。
任意丟棄客戶資料 英國銀行因而違法有鑑於英國14家銀行及金融公司被發現有任意丟棄客戶個人資料而違反「資料保護法」(Dada Protection Act)的情形,英國資訊官辦公室(Information Commissioner´s Office,ICO)於2007年3月17日要求其中11家銀行及金融公司簽署一份承諾書,保證其將來在處理客戶資料時必當遵守資料保護法的規定。 資訊官辦公室次長表示,銀行及金融公司應該以嚴肅的態度來處理客戶資料安全性的問題,否則,他們不但要接受資訊官辦公室更進一步的資訊安全審核,而且還會失去客戶對其之信賴。再者,若這些組織仍不遵守其簽署的承諾書,除了可能對遭到行政罰外,甚至還可能需要負擔違反資料保護法的刑事責任。 除了資訊官辦公室,英國的金融服務局(Financial Services Authority,FSA)亦有權針對違反資料保護法規定之金融公司加以執法。今年2月,英國房屋抵押貸款協會(Nationwide Building Society)便在金融服務局的資訊安全審核中,因為其使客戶資料暴露在可能遭竊的風險下而被處以1百萬鎊的罰金。
美國國家標準技術局(NIST)更新電子簽章標準美國國家標準技術局(National Institute of Standards and Technology, NIST)於近日(2013年7月)更新電子簽章的技術標準「FIPS (Federal Information Processing Standard) 186-4數位簽章標準」,並經商務部部長核可。NIST於1994年首次提出電子簽章標準,旨在提供工具可資促進數位時代的信賴性,後續也隨著技術進步與革新,而有多次修訂。此次修訂,主要是調合該標準,使之與NIST其他加密相關指引(如金鑰加密標準)一致,以避免將來可能產生的矛盾。 此次增訂,亦明列出三種可保護資料的簽章產製與確認技術:數位簽章演算法(Digital Signature Algorithm, DSA)、橢圓曲線簽章演算法(Elliptic Curve Digital Signature Algorithm, ECDSA)、以及RSA公眾金鑰演算法(Rivest-Shamir-Adleman Algorithm, RSA)。 其他修訂的部分,還包括語彙的明晰化,以及降低對於隨機號碼產生器的利用限制…等。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。