中研院今天發表一份研究成果:利用「基因改造」,成功的將七十公克的胖老鼠減重到四十公克,而且沒有什麼副作用。未來經過人體實驗,將有機會成為人類減肥的最新方法。
研究團隊發現,脂肪細胞活性與細胞內的粒腺體含量有關,而「粒腺體」就相當於細胞的「火力發電廠」,專門幫助代謝熱量、並轉化為能量供體內使用。當脂肪細胞含有大量粒線體的時候,就可以自行代謝體內所堆積的油脂、健康瘦身。計劃主持人、分子生物研究所副研究員李英惠解釋:利用藥物刺激,可以誘發體內的一種「Gs蛋白」,在老鼠胚胎上進行基因改造,或是後天以藥物餵食老鼠,活化體內GS蛋白質,透過各種方式,証明GS蛋白質的確可以增加脂肪細胞中粒腺體含量和活性,慢慢的代謝掉細胞內堆積的油脂。研究團隊還意外發現,改造後的老鼠,不但不容易發胖,而且平均壽命還增加了20%。
目前動物實驗已經證明:體內具有這種改造過的脂肪細胞,不但不容易發胖,壽命也可以增長。未來經過人體實驗,將有可能成為人類「健康減肥」的最新方法。
本文為「經濟部產業技術司科技專案成果」
由於美國近年來透過太空系統進行通訊、定位導航、太空探索及國防等多方面應用,為避免太空系統受到網路威脅,白宮於2020年9月4日發布《太空政策第5號指令》(Space Policy Directive-5,SPD-5),該指令主要關注太空系統的網路安全,將現有地面使用的網路安全政策應用在太空系統中,旨在提高美國太空設施網路安全。 SPD-5指令建立以下五項太空網路安全原則,作為指導政府及民間單位提高太空系統網路安全的方法: 一、太空系統及相關軟硬體設施,應使用以風險等級為基礎的方式,進行開發運作並建構其網路安全系統。 二、太空系統營運商應制定太空系統網路安全計畫(應包含防止未經授權的存取行為、防止通訊干擾、確保地面接收系統免受網路威脅、供應鏈的風險管理等功能),以確保能掌握對太空系統的控制權。 三、監管機構應訂定規則或監管指南來實施SPD-5指令的原則。 四、太空系統的營運商及其合作對象應共同推動SPD-5指令,並盡力減少網路威脅的發生。 五、太空系統營運商在執行太空系統網路安全的保護措施時,應管理其風險承擔能力。 儘管SPD-5指令並未指示特定機構執行上開原則,但已有美國聯邦通信委員會將SPD-5之網路安全原則納入其法規中,未來SPD-5指令將有可能作為美國太空網路安全措施及法規訂定的基礎。
從日本山崎案談營業秘密不法取得之管理從日本山崎案[1]談營業秘密不法取得之管理 資策會科技法律研究所 法律研究員 駱玉蓉 105年05月25日 壹、前言 為強化營業秘密的保護,日本從2003年開始,於不正競爭防止法(以下稱本法)中導入刑事保護的相關條文,爾後經過多次修法,在2011年調整刑事訴訟程序的同時,於本法導入了即使行為者不使用或揭露所示的營業秘密,但只要以獲取不當利益為目的,且「以複製」等方式「取得營業秘密」,亦為刑事處罰的對象[2]。2014年名古屋地院的日本山崎Mazak案件(ヤマザキマザック事件,以下稱本案)則是在此修法背景中,於少數公開判決中最先單獨引用該法條的案件。 面對層出不窮的營業秘密侵害案件,為遏止及處罰不法取得、使用或洩漏他人營業秘密的行為,我國營業秘密法亦於2013年的修法中增訂侵害營業秘密的刑事責任,將「知悉或持有營業秘密,未經授權或逾越授權範圍而重製、使用或洩漏該營業秘密」的行為[3]納入刑罰範疇,以期可有效遏阻營業秘密侵害案件。 有鑒於營業秘密外洩情形與不法取得手法的多變,本文將先從本案營業秘密侵害行為、存取/接觸權限控管的漏洞出發,接著探討應如何從控管員工的接觸/存取權限以強化營業秘密的保護,最後從落實營業秘密管理的面向,彙整本案受法院判決肯定之營業秘密保護措施及可進一步強化之配套,期給予我國企業營業秘密管理的省思。 貳、事件概要 中國大陸籍的被告Y,於2006年4月進入工具機大廠山崎Mazak(以下簡稱原告公司)任職,於2011年8月轉調連結業務部門與研發部門的業務技術部,於2012年3月因獲得其他公司聘書而提出離職申請,預定離職日為同年4月20日。 檢察官於一審的起訴內容提到,被告Y在無業務需求的狀況下,將三萬件以上的設計圖面等由公司內部伺服器下載至私人硬碟中,更於提出離職的當月,下載約一萬件與轉職企業相關機種的設計圖面等技術資料。雖然被告Y辯稱取得該等資料的目的在於工作上的學習需求,但根據被告Y與其中國大陸友人的往來訊息可知被告Y亟欲脫手所取得的技術資料以換取現金。 原告公司在本案當時,對技術資料的權限控管為將技術資料儲存在公司內部伺服器的資料夾內,僅業務上有需要的員工才能進行存取、下載,此外,原告公司配發給員工的業務用電腦亦設定有員工個人的帳號、密碼來進行認證,並藉由IP位址來辨識存取網路資料的員工所屬部門及該員工的存取權限。有關前述IP位址的分配,為一個部門配發255個IP位址對應255台電腦,當一部門未達255台電腦時,將會有未被電腦對應的IP位址存在,被告Y便是將自己電腦的IP位址切換成未被電腦對應的IP位址,再進行檔案的存取與複製。經由上述一連串的證據與事實證明,一審法院認定被告Y以不當得利為目的而複製(取得)原告公司的營業秘密,處以拘役兩年、併科罰金50萬日幣的判決。 參、判決評析 從本案可知,原告為保護其營業秘密,針對存取/接觸營業秘密者設有相關限制管理。亦即,藉由IP位址辨識存取網路資料的員工所屬部門及存取權限,再透過存取權限的帳號、密碼進行認證管理,該種管理方式立意良好,但在實施時,卻因為有未被電腦對應的IP位址存在,而讓被告Y取巧以切換IP位址的方式逾越權限接觸並取得原告公司的營業秘密。此外,雖然原告公司有留存電腦log紀錄,因而最後能證明被告Y曾進行六千次以上的資料存取,但若能在事前做好防備,強化管理措施,例如禁止濫用IP位址越權存取或限定存取次數等方式,增加意圖竊取營業秘密者的取得困難,相信能更遏阻潛在或食髓知味的不法行為。 以下從本案原告公司對於員工接觸權限的控管為啟發,例示限制員工存取/接觸營業秘密,可採取的強化對策。 一、適當賦予一定範圍之存取/接觸權。 例如在企業的研發單位,可依專案或產品線而拆分成多個範圍,依據範圍設定可存取/接觸的權限,藉此可避免出現如本案中,僅限定存取/接觸權、卻未區分範圍,導致一人手持帳號密碼便可通行無阻存取/接觸全部資料,造成外洩時損害程度的提高。 二、在上述對策一的基礎上,於資訊系統中註冊存取/接觸權者的帳號。 除了落實一帳號一密碼的原則,針對單一帳號的存取/接觸權限來限制其可閱覽、存取的資料範圍或內容外,若是員工有離職、轉調等情況時,亦要配合以刪除ID、更改存取/接觸權限的方式來應對,避免如本案因作業方便而導致有空的IP位址等開後門的情況,而造成營業秘密管理功虧一簣。 三、以區分保管來限制對營業秘密的存取/接觸權限。 區分保管可大分為「空間分離保管」以及「資料區分保管」。以空間分離保管為例,可依進出人員區分為訪客可進入的區域、持有門禁卡員工均可進入的區域、僅限定該部門員工才可進入的區域、針對保管高機密性資訊區域,實施指紋等生物認證的門禁管制。而以資料區分保管為例,常見的做法有高機密性文件與一般文件區分保管。 例如在本案中,隸屬於業務技術部的人員,便不應該擁有自由存取/接觸其他部門—研發部門之研發資料的權限,建議企業可透過前述的空間分離保管、資料區分保管,兩種方式雙管齊下,實施跨部門資料存取權限的控管。 四、禁用私人紀錄媒體、落實紀錄媒體的使用及保管。 嚴禁使用外接式的私人紀錄媒體,企業除了須備足員工所需的紀錄媒體之外,更需制訂與落實紀錄媒體的使用及保管措施。在本案中,即因原告公司當時的業務技術部部長(下稱部長Q)發現到部門內的紀錄媒體使用不受控管,導致私人紀錄媒體濫用的現象,便於其轄下部門制定如:建立可攜式紀錄媒體管理清單及使用規定,落實借出/返還管理、以及明訂禁止攜入或使用私人的外接式紀錄媒體的規範等,法院因而認定原告公司已採取合理保密措施。 然而,除了明定紀錄媒體的禁止使用或限制使用等規定外,還應透過週會、組會、課程宣導等方式周知可攜式紀錄媒體的使用規則,同時透過定期稽核確保該使用規則的確實執行,避免徒有管理規範卻未落實控管。 肆、結論 本案原告公司雖明定營業秘密相關的管理規定,例如權限設定、禁用私人紀錄媒體、公司紀錄媒體使用及保管等各種管理措施,而在本案獲得勝訴判決。但除了管理措施有可強化之處外,主要的原因仍發生於管理機制於實際運作上未嚴格落實,而有部門員工長期持有企業配置的硬碟與USB隨身碟而未歸還,甚或違反禁止使用私人可攜式紀錄媒體的規定,使用私人硬碟等的狀況,造成被告Y有機可乘使用私人硬碟儲存原告公司上萬筆設計圖面等資料。 從此可知,即便企業已建立各種營業秘密相關的管理措施,仍須定期追蹤掌握管理機制的落實,例如定期內部檢視和外部稽核、不定期抽查員工電腦使用紀錄等,確保營業秘密的有效管理。同時間,企業亦應隨時預警任何不符規定的異常警報,透過log異常行為的警示設定,提早發現問題並採取證據保全措施,將營業秘密外洩風險或損害降至最低。 企業歷經營業秘密的盤點、分級、達成管理措施共識,到形成各部門遵循的管理制度等繁複流程,始確認營業秘密保護標的及合法合理的管理措施,若是未落實執行管理,除了增加營業秘密外洩的風險,於後續訴訟階段也難以處於有利舉證的立場。所謂魔鬼藏在細節裡,無論是何種對策,確實落實而不流於形式,更是保護營業秘密的不二法則。 本文同步刊登於TIPS網站(http://www.tips.org.tw) [1] 名古屋地裁平成26年8月20日判決。 [2] 2011年日本《不正競爭防止法》第21條第1項第3款。 [3] 2013年我國《營業秘密法》第13條之1第1項第3款。
歐盟執委會發布指引以因應《人工智慧法》「禁止的人工智慧行為」條文實施歐盟執委會於2025年2月4日發布「關於禁止的人工智慧行為指引」(Commission Guidelines on Prohibited Artificial Intelligence Practices)(下稱「指引」)」,以因應歐盟《人工智慧法》(AI Act,下稱AIA)第5條關於「禁止的人工智慧行為」之規定。該規定自2月2日起正式實施,惟其內容僅臚列禁止行為而未深入闡釋其內涵,執委會特別制定本指引以避免產生歧義及混淆。 第5條明文禁止使用人工智慧系統進行有害行為,包括:利用潛意識技術或利用特定個人或群體之弱點進行有害操縱或欺騙行為、實施社會評分機制、進行個人犯罪風險預測、執行無特定目標之臉部影像蒐集、進行情緒識別分析、實施生物特徵分類、以及為執法目的而部署即時遠端生物特徵識別系統等。是以,指引就各禁止事項分別闡述其立法理由、禁止行為之具體內涵、構成要件、以及得以豁免適用之特定情形,並示例說明,具體詮釋條文規定。 此外,根據AIA規定,前述禁令僅適用於已在歐盟境內「投放市場」、「投入使用」或「使用」之人工智慧系統,惟對於「使用」一詞,並未予以明確定義。指引中特別闡明「使用」之定義,將其廣義解釋為涵蓋「系統投放市場或投入使用後,在其生命週期任何時刻的使用或部署。」 指引中亦指出,高風險AI系統的特定使用情境亦可能符合第5條的禁止要件,因而構成禁止行為,反之亦然。因此,AIA第5條宜與第6條關於高風險AI系統的規定交互參照應用。 AIA自通過後,如何進行條文內容解釋以及法律遵循義務成為各界持續討論之議題,本指引可提升AIA規範之明確性,有助於該法之落實。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)