慶祝國家衛生研究院成立十周年,國衛院表示將規劃成立生物製劑先導工廠,今年可發包動工,預計三年內完成,未來除了生產台灣本土性傳染病所需疫苗外,也協助衛生署流感疫苗自製計劃提供技術來源。行政院核准通過十二億元的生物製劑先導工廠,目前已進入招標階段,預計六、七月份可正式動工,預計三年後完工投產,未來將成為符合聯合國國際疫苗中心 (The International Vaccine Institute, IVI) 的規格的 GMP 生產線。
此外,配合衛生署的公共衛生計劃,國衛院疫苗研發中心也將建立本土性傳染病如腸病毒、 SARS 、白喉、百日咳、破傷風及日本腦炎的資料庫,部份疫苗市場潛力發展有限,但是透過國衛院的保存,讓我國具備完整的疫苗量產能力。政府計劃投資五十億元興建大型流行感冒疫苗工廠,國衛院將扮演技術提供的角色,包括參考實驗室,人員訓練,及微生物量產疫苗的開發,都將由生物製劑先導工廠負責。
本文為「經濟部產業技術司科技專案成果」
澳洲經濟核心所在之新南威爾斯州(首府雪梨)於2016年11月30日提出新南威爾斯創新戰略(The NSW Innovation Strategy),嘗試整合政府公部門、營利組織、非營利組織、教育及研究機構、社群或個人共同面對新的經濟、社會、環保議題之挑戰,藉由投入新型態的公共投資(the new forms of public investment),協助發明與創新者得以將他們好的創意轉換為成功的商品與服務。此外,不僅要發展未來產業創造工作機會,更要為此預先儲備能夠發揮高科技發展所需技能之人力資源。 基此,新南威爾斯政府的創新戰略將著重於下列四項目標的達成: (1)政府成為創新領導者(Government as an innovation leader) (2)促進和運用研究發展(Fostering and leveraging research and development) (3)未來技能養成(Skills for the future) (4)創業者的家園(A home for entrepreneurs) 同時,具體執行方法,在機制面上首先將啟動新南威爾斯創新窗口服務(NSW Innovation Concierge Service),與澳洲跨部會創新委員會協調運作,以確保重要意見並未遺漏,並且讓專家及決策者可考量到各種可能。 而其他執行方法中,在法制面上影響較大者是在澳洲政府推動金融科技之監理沙盒制度的基礎上,嘗試擴大適用範圍不限於金融業之監理法令,可及於創新產業之法令試作。另外,也將針對採購規範進行修正,使政府與民間可以更便於運用政府採購促進產業發展與扶助中小企業,同時滿足政府提供公共服務之需求。更甚者,將推動對創新商品及服務的政府採購,藉由提供一定市場需求,穩定新創科技及業者之發展。
英國通過《2018自動與電動車法》英國於2018年7月通過自動與電動車法(Automated and Electric Vehicles Act 2018),對自動與電動車輛之定義、保險議題以及電動車充電基礎設施進行規範。 針對自駕車之保險議題,該法採取「單一保險人模式」(Single Insurer Model),無論是駕駛人自行駕駛或自動駕駛,駕駛人均應購買自駕車保險,讓所有用路人對於可能之安全事故均有保險可涵蓋並追溯責任。本法其他重要規定如下; 本法未直接賦予自駕車(Automated vehicle)明確定義,管理方式係由主管機關自行認定並建立清單。本法僅要求清單內之車輛應設計或調整為至少於某些特定狀況能安全行駛之自動駕駛模式。 已納保之自駕車行駛時所造成之損害,將由車輛之承保公司負擔損害賠償責任。 未納保之自駕車若發生事故,則車主應負擔損害賠償責任。 若由保險人負損害賠償責任,則受害人將可依現行法規提出損害賠償請求。保險人則可依普通法與產品責任相關規定,向應對事故負責之單位或個人提出損害賠償請求。 於電動車充電基礎設施之部分,該法之目的則是確保公共充電站適用於所有市面上之電動車輛,並就費用、付費方式以及相關安全標準進行規範,以增進消費者之信任。該法第20條並授權主管機關訂定相關授權辦法,以達上述目標。
新加坡網路安全局發布人工智慧系統安全指南,以降低AI系統潛在風險新加坡網路安全局(Cyber Security Agency of Singapore, CSA)於2024年10月15日發布人工智慧系統安全指南(Guidelines on Securing AI Systems),旨在強化AI系統安全,協助組織以安全之方式運用AI,降低潛在風險。 該指南將AI系統生命週期分成五個關鍵階段,分別針對各階段的安全風險,提出相關防範措施: (1)規劃與設計:提高AI安全風險認知能力,進行安全風險評估。 (2)開發:提升訓練資料、模型、應用程式介面與軟體庫之供應安全,確保供應商遵守安全政策與國際標準或進行風險管理;並辨識、追蹤及保護AI相關資產(例如模型、資料、輸入指令),以確保AI開發環境安全。 (3)部署:適用標準安全措施(例如存取控制、日誌記錄),並建立事件管理程序。 (4)運作與維護:持續監控AI系統的輸入和輸出,偵測異常與潛在攻擊,並建立漏洞揭露流程。 (5)壽命終期:應根據相關行業標準或法規,對資料與模型進行適當之處理、銷毀,防止未經授權之存取。 CSA期待該指南發布後,將有助於預防供應鏈攻擊(supply chain attacks)、對抗式機器學習攻擊(Adversarial Machine Learning attacks)等安全風險,確保AI系統的整體安全與穩定運行。