日本企業陸續向開發中國家提供環保技術援助

 

 

  應中國鋼鐵工業協會(以寶山鋼鐵為首)之請,日本鋼鐵聯盟擬提供中國削減溫室氣體的環保技術。中國雖不在京都議定書約束的國家之列,急遽的經濟成長所造成的空氣污染已帶來嚴重的環境問題,日本鐵鋼聯盟於24日的委員會上正式決定技術援助的計劃,近期內將與中國討論相關細節。


  日本鋼鐵業界自1990年度起,平均每年投注1200億日圓開發該產業的環保技術,目前業界「回收熔爐熱能轉供發電等能源節約技術」已經領先全球。日本鋼鐵業界2003年度換算成二氧化碳的溫室氣體排放量雖然已較1990年度減少6.4%,仍然未能達到京都議定書中要求減量10%的目標。


  利用京都議定書的「彈性機制」,業界也可藉由跨國的技術援助,將國外減少的溫室氣體額度直接計入本國的額度之內。目前為止由日本政府核可的「彈性機制」計劃共15件,今年一月甫通過鹿島建設公司將馬來西亞廢棄物處理場的沼氣轉為電能的計劃,除此之外,東京電力公司和住友商事都分別在智利和印度有相關的環保計劃。

 

本文為「經濟部產業技術司科技專案成果」

※ 日本企業陸續向開發中國家提供環保技術援助, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=259&no=64&tp=1 (最後瀏覽日:2026/01/22)
引註此篇文章
你可能還會想看
FCC將關閉北卡地區之類比無線電視

  完成700MHz頻段之頻譜拍賣後,美國通訊傳播委員會(Federal Communications Commission, FCC)亦開始積極著手準備頻譜回收工作,以期能夠順利在2009年2月17日全面關閉類比無線電視訊號,完成無線電視數位化及頻譜回收。   為能提早發現關閉類比無線電視訊號可能帶來之問題或影響,FCC於2008年5月8日宣布將在2008年9月8日中午12時正式關閉北卡威明頓(Wilmington)地區之類比無線電視訊號。在此次關閉類比無線電視訊號過程中,FCC將和無線電視、有線電視等相關業者及協會密切合作,以解決過程中發生的任何問題。FCC之所以選擇威明頓地區率先關閉無線類比電視訊號,主要原因之一在於威明頓地區的四大電視網均已完成數位化工作,並自願提前關閉類比無線電視訊號。   針對於FCC此一測試計畫,美國國家廣播電視協會(National Association of Broadcasters, NAB)亦發表聲明表示支持與配合。除此之外,NAB同時表示此次試驗的結果必須被審慎檢驗,並用於決定如何關閉全國的類比無線電視訊號。NAB希望有關單位透過此次試驗之結果,決定明年全面關閉類比無線電視訊號時,聯邦、州及地方政府應如何合作、數位機上盒供應、有線電視及衛星電視業者之配合等相關問題。

美國擬投入110億美元扶持半導體研發,並成立國家半導體技術中心

美國白宮於2024年2月9日宣布從《晶片與科學法》(CHIPS and Science Act)撥款110億美元執行「CHIPS研發計畫」(CHIPS Research and Development (R&D) programs),並將設立投資基金,協助美國新興半導體公司技術商業化發展。 CHIPS研發計畫源係於美國國會於2022年8月通過《晶片與科學法》,提供527億美元的經費支持美國半導體產業,其中390億美元用於補助半導體生產,110億美元用於半導體研發。此次CHIPS研發計畫的具體作法如下: (1)建置國家半導體技術中心(National Semiconductor Technology Center,簡稱NSTC):為CHIPS研發計畫的核心項目,將投資50億美元建置NSTC,協助美國先進半導體研發與設計,確保美國於半導體領域的領先地位。NSTC將向公眾共享設施與專業知識,幫助創新者取得相關專業知識與能力。此外NSTC亦將推動利益團體(Community of Interest),將開放所有利益相關者就NSTC的規劃提供意見。 (2)投資半導體人才(Investing in the Semiconductor Workforce):創建人才勞動卓越中心(Workforce Center of Excellence),以培育、訓練美國半導體產業所需人才,並促進產業界與學術界的合作。 (3)投資其他關鍵領域研發之需求(Investing in Other Key R&D Needs):向美國晶片製造研究所(CHIPS Manufacturing USA Institute)投資至少2億美元,以創建美國首座半導體製造數位孿生研究所(Semiconductor Manufacturing Digital Twin Institute),以降低晶片研發製造的成本,加速創新技術商業化之週期;以及投資3億美元於先進封裝產業,以提升半導體系統之效能。以外亦投資1億美元資助「CHIPS量測計畫」(CHIPS Metrology Program)的29個項目,幫助研發新型測量設備與方法,以滿足為電子產業的技術需求。

美國法院否決Google與作家、出版商達成的和解協議

  美國紐約南區地方法院於今年3月22日裁定否決Google 與美國作家協會(Authors Guild)及出版商間所達成的和解協議。此和解案起於Google 於2004年提出的Google Books 計畫,規劃與各大學圖書館合作進行將其館藏圖書數位化。美國作家協會於是於2005提起集體訴訟,在經過兩年談判後與Google 於2008年達成和解協議。如此協議被法院認可,Google 將可掃描及販售成千上萬之書籍,其中包含已絕版之書籍,且即使這些書籍並非屬於公共財或未取得出版商之許可置於Google Books上。   美國地方法院法官Denny Chin表示雖然將書籍數位化且建制完整的數位圖書館(universal digital library)將會造福很多人,但認為和解協議的內容不具公平、適當及合理性。因相較於其競爭對手,此和解協議將給予Google享有顯著的優勢,讓其進行大規模的複製未經授權的著作。   Google 律師表示此裁定令人失望,但將檢視法院之判決並思考後續之選擇,並說明不論結果如何,Google 將持續致力於將全世界的書籍藉由線上Google Books 及Google eBooks 的方式被發現。

因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議

2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP