環保署提京都議定書因應對策 研擬溫室氣體管制法

 

 

  管制全球溫室氣體排放以遏制全球暖化的京都議定書在二月十六日生效,環保署將著手推動溫室氣體管制法的法制作業工作,目前正研擬溫室氣體管制法,規劃將由中央主管機關擬訂「全國溫室氣體防制基本方案」,同時確立政府各部門、企業及國民溫室氣體減量合作及分工;並規範推動國家溫室氣體盤查、登錄及排放清冊建置;授權訂定排放管制、財稅誘因及排放交易制度;推動溫室氣體減量技術研發等;同時推動教育宣導、推廣及鼓勵使用高能源效率產品與節約能源生活方式。


  環保署署長張祖恩強調,雖然現有京都議定書條文中沒有貿易制裁或違約罰款的條款,但在合作共生的理念下,我國沒有理由當一個國際溫室氣體減量列車的搭便車乘客(free rider),應在公約精神下,積極推動節約能源、再生能源開發、提昇能源效率等工作。


  環保署已於2004年度起首度整合產業、運輸及住商部門領域,辦理溫室氣體盤查管理工作,建立盤查規範登錄平台,積極推動國際標準組織ISO14064驗證系統,並遴選電力、石化、鋼鐵、造紙、水泥、光電半導體等業別12家示範廠商,推動6種溫室氣體全面盤查及減量工作,其中排放大戶台灣電力股份有限公司、中國鋼鐵股份有限公司、中國石油股份有限公司均已參與環保署試行盤查減量計畫。對於溫室氣體排放持續成長的住商部門,環保署協調相關部會規劃成立技術服務團,輔導既有建築物推動節約能源及提昇能源效率工作;對於運輸部門,除持續推動大眾運輸系統外,環保署將與相關部會加強推動油電混合小客車之引進。

 

本文為「經濟部產業技術司科技專案成果」

※ 環保署提京都議定書因應對策 研擬溫室氣體管制法, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=260&no=55&tp=1 (最後瀏覽日:2026/02/02)
引註此篇文章
你可能還會想看
淺析自駕車道路實驗規範-以日本法為對象

五年投資一百五十億 生醫科技島計劃啟動

  經過一年以上的準備,行政院科技顧問組六日宣布啟動「生醫科技島計畫」計劃。自今年起以五年投入一百五十億元預算,建立「國民健康資訊基礎建設整合建置計畫( NHII )」、「台灣人疾病及基因資料庫( Taiwan Biobank )」、及「臨床試驗研究體系」三大重點。未來除了減少健保成本一百億元以上,也希望協助業界創造數百億元市場商機。   生醫科技島計畫為國內所帶來的效益方面, NHII 將可減少醫療支出三%,共一百億元規模,至於促進民間投資及產業升級方面,預期五年內可帶動民間及政府投資四百億元以上;至於 Taiwan Biobank 方面,除了領先新加坡及中國大陸建立華人特定族群基因資料庫的供給中心,更可帶動國內的新藥開發、基因治療、藥物副作監測,及疾病篩檢及防治等醫藥發展。   行政院科技顧問組指出,其中 Taiwan Biobank 計劃因為涉及「科技對倫理、法律及社會( ELSI )」等議題有較多社會疑慮,將根據現有的醫事法及立法院正進行三讀的個人資料保護法立法精神,預計今年先進行五千人基因資料蒐集,待兩年後正式的基因資料保護相關法律定出新法後,將會加速完成二十萬人的資料蒐集。

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

美國病歷健康資訊科技化政策可望於10年內節省220億美元用藥支出

  美國「2009年經濟復甦暨再投資法」(America Recovery and Reinvestment Act, ARRA),將醫療產業中的醫療資訊科技列為重點發展項目之ㄧ。以國內全面採行「電子病歷健康記錄」(electronic health records, EHRs)系統為目標,共挹注190億美元的經費,透過聯邦醫療保險或醫療補助計畫的機制支付獎勵金,鼓勵醫師或醫療院所採購並建置院內的電子醫療資訊系統。自2011年至2015年,醫師或醫療院所符合實質EHR使用者(meaningful EHR user)的標準,至多可獲得44000美元的獎勵金;倘於2015年後,其尚未成為實質EHR使用者,則將以每年多1%的比例,逐年減少其醫療保險補助額,直至2019年將減少5%。為了施行此政策,ARRA規定主管機關須於2009年12月31日前確立EHR的標準,包含了相互運用性(interoperability)、臨床功能性(clinical functionality)及安全性等標準。   EHR系統的基礎,也就是電子醫囑(e-prescribing)所涵蓋的功能,能提供臨床及藥費的即時資訊,供醫師判斷何種藥物(包含學名藥)最為安全,且可符合病患經濟負擔;亦可顯示該病患用藥紀錄,及其他醫生曾開立的處方,供醫師比對並觀察病患潛在的藥物過敏現象,若系統偵測出藥物間相斥的情形,亦將自動發出安全警示。此外,以電腦輸入處方並自動傳送至領藥處的模式,不僅可省卻病患冗長的等候領藥時間,亦能減少藥劑師因難以判讀字跡所導致的配藥錯誤。 一項由美國藥物照顧管理協會(Pharmaceutical Care Management Association, PCMA)所贊助的調查研究指出,ARRA中的病歷健康資訊科技化措施,將使e-prescribing的運用率,在未來五年內增加75%;而在往後10年,此將減少約3500萬筆的用藥指示錯誤,消弭因服藥錯誤導致的死亡事件,並能節省220億的用藥支出;其所帶來的效益實遠超過政府所挹注的經費。

TOP