美國司法部(Department of Justice)指控微軟、Yahoo和Google三家入口及搜尋網站業者,於1997到2007年間,違反禁止網路賭博之規定,接受非法賭博業者委託刊登線上廣告。
美國司法部認為此三家公司除違反聯邦線上博奕法(Federal Wire Wager Act)禁止賭博之規定以外,另違反聯邦博奕課稅條例,以及各州與地方有關禁止賭博之規定。為此,美國國稅局(Internal Revenue Service)和聯邦調查局亦介入此一案件之調查,並與司法部共同認為微軟、Yahoo和Google等著名入口網站對於社會具有重大影響力,刊登線上賭博廣告之行為不僅違反法規事實明確,對於間接促進相關線上賭博產業之興盛與賭博行為之猖獗亦應負社會責任。
在法院進行實質審理前,三家公司已於2007年12月與司法部達成和解協議,同意支付3150萬美元之罰金(折合台幣約10億元),並配合線上公益及宣導賭博違法等義務。
本文為「經濟部產業技術司科技專案成果」
維吉尼亞州最高法院以維吉尼亞州電腦犯罪法(Virginia Computer Crimes Act)中關於垃圾郵件之條文違反美國憲法第一修正案對言論自由之保護,於2008年9月12日判定該條文違憲。 2003年時,維吉尼亞州檢方為追查垃圾郵件發送人,而搜索居住於加州地區之Jeremy Jaynes,據信Jeremy Jaynes透過發送垃圾郵件每月可獲利達75萬美元。在該次搜索過程中,維吉尼亞州檢方發現Jeremy Jaynes持有大量電子郵件位址資訊以及上百萬美國線上公司(AOL)用戶之電子郵件帳號及其他個人資訊,檢方便以維吉尼亞州電腦犯罪法中關於垃圾郵件之規範起訴他。Jeremy Jaynes在一審及二審均被判有罪,然其抗辯維吉尼亞州電腦犯罪法中關於垃圾郵件規範之條文違反美國憲法第一修正案所保障之言論自由。 維吉尼亞州最高法院認為,電腦犯罪法中關於垃圾郵件之規範並不以商業性電子郵件為限,則包含政治性言論以及宗教性言論之非商業性電子郵件亦將受到此一條文之限制。有鑑於發表匿名言論乃是美國憲法第一修正案所保護之言論自由的一環,該法條即必須通過嚴格審查標準,亦即該管制規範必須係為達州之重大公共利益之侵害最輕微的手段,電腦犯罪法之該條文並無法通過此一審查標準之檢驗,故而判定違憲。
搶國際創新創業人才,韓國擬年內推出「韓國新創特殊簽證」韓國中小企業暨新創事業部(Ministry of SMEs and Startups, MSS)於2024年7月31日,在首爾江南區TIPS Town的「國際創業中心」(the Global Startup Center)開幕典禮上宣布將推出「特殊創業家簽證」(Startup Korea Special Visa),計劃年底前實施。此計畫旨在擴大對國際新創的支持,延攬國際創新創業人才,以加速韓國新創生態系統國際化。 中小企業暨新創事業部部長指出,將與法務部(Ministry of Justice)跨部會合作推出此一新簽證,讓具有創新和商業潛力的國際新創更容易在韓國落地發展創立新事業。部長更進一步向國際新創喊話,韓國過去幾年成功孕育出多家重量級獨角獸企業,極具協助新創發展為獨角獸企業之優勢。 推出此一「特殊創業家簽證」措施,係為因應去年公布之「韓國新創政策」(Startup Korea)中提出對於現行創業家簽證(startup visa)進行改進之策略。 蓋韓國現行的創業家簽證相較於其他先進國家有較嚴格的條件,通常有學歷限制以及各式佐證資料的要求,對不少外國創業家構成申請之阻礙。 而新的「特殊創業家簽證」著眼於外國新創的創新與商業潛力。若外國新創被認定具創新性與獲利能力,則不考慮其學歷或是否取得相關智慧財產權等制式標準,將直接發給「特殊創業家簽證」。至於認定外國新創是否具備創新性和商業可行性的評估,將由民間甄審委員會而非公共機構負責。 韓國中小企業暨新創事業部與法務部預計年底前完成細節實施計畫,以順利啟動「特殊創業家簽證」制度。此一新簽證制度預計將顯著促進韓國新創生態系統發展,使來自世界各地具有創新和商業頭腦的創業家更容易在韓國落地生根。 後疫情時代,因應產業快速調整,各國政府無不努力擘劃一系列攬才留才策略,以促進國家經濟創新轉型發展。我國政府亦應從國際動向觀察政策趨勢,韓國中小企業暨新創事業部本次發布之新簽證制度,非常值得我國參考借鏡。
溫室氣體減量及管理法重要議題簡析 合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。