美國司法部(Department of Justice)指控微軟、Yahoo和Google三家入口及搜尋網站業者,於1997到2007年間,違反禁止網路賭博之規定,接受非法賭博業者委託刊登線上廣告。
美國司法部認為此三家公司除違反聯邦線上博奕法(Federal Wire Wager Act)禁止賭博之規定以外,另違反聯邦博奕課稅條例,以及各州與地方有關禁止賭博之規定。為此,美國國稅局(Internal Revenue Service)和聯邦調查局亦介入此一案件之調查,並與司法部共同認為微軟、Yahoo和Google等著名入口網站對於社會具有重大影響力,刊登線上賭博廣告之行為不僅違反法規事實明確,對於間接促進相關線上賭博產業之興盛與賭博行為之猖獗亦應負社會責任。
在法院進行實質審理前,三家公司已於2007年12月與司法部達成和解協議,同意支付3150萬美元之罰金(折合台幣約10億元),並配合線上公益及宣導賭博違法等義務。
本文為「經濟部產業技術司科技專案成果」
2014年Akamai Technologies針對最高法院提起上訴,因此發回聯邦巡迴法院重審,而後上訴法院認為Limelight Networks確實侵害Akamai的專利,Akamai並獲得$ 45.5萬美元的損害賠償。 2006年,Akamai Technologies公司(下稱Akamai)在美國馬薩諸塞州地方法院起訴Limelight Networks(下稱Limelight),指控Limelight侵害Akamai美國專利號6108703。原告Akamai的專利是有效傳送網頁內容的方法專利。而被告Limelight是經營伺服器網路的公司,和Akamai該專利的差別在於Limelight指示用戶完成其中一個修改的步驟。 本案從2006年一直持續到2014年向最高法院上訴為止,都是依據美國專利法第271條規定直接和間接侵權的概念。在原審認為「實施該方法專利」的侵權行為,是要求實施方要獨立完成該侵權行為,所以Limelight不能被視為直接侵權。又因為Limelight公司並沒有滿足單一實體規則(single-entity rule),控制或指示(control or direction)其實施方完成其他的專利之方法步驟,所以不用負共同侵權責任。 但上訴聯邦巡迴法院一致贊成Akamai被侵權,並指出如果被告 Limelight知道並使用專利權人Akamai的專利,而且執行大部分的步驟,只保留一項步驟未執行,進而引誘用戶執行該方法專利的最後一個步驟,且用戶真的執行了該最後一步驟, Limelight就構成美國專利法271(b)間接侵權中的引誘侵權。
英國運輸部向議會提交《2023年公共充電樁規則》草案,規範充電樁規格標準英國運輸部(Department for Transport)2023年7月11日向議會提交《2023年公共充電樁規則(Public Charge Point Regulations 2023)》草案,希望改善電動車駕駛的充電體驗。草案是根據《2018自動與電動車法(Automated and Electric Vehicles Act 2018)》授權,規定一系列充電樁營運商必須遵守的充電樁規格標準,充電樁營運商若未遵守相關規定,最高可處以每座充電樁1萬英鎊之罰鍰: 一、定價及費用透明:充電樁營運商必須清楚標示每時段定價,以便士/瓩時(p/kWh)作為計價單位。每次充電後必須顯示充電總費用。 二、須提供24小時免費客服專線:充電點營運商須提供免費24小時專線,支援客戶服務。同時將客戶所提出的問題、解決方式和時間做成紀錄。 三、開放資料:充電樁營運商必須遵守開放式充電協議(Open Charging Point Interface, OCPI),建構開放式充電網絡,消除漫遊服務資料存取的障礙,免費公開充電樁位置、充電狀態、功率等充電樁相關資料。 四、感應式支付:所有新的8瓩以上公共充電樁,及現有快速公共充電樁必須提供消費者零接觸、無現金支付選項。 五、99%可靠性:所有快速公共充電樁,可靠性要求必須高達99%(即99% 的時間可以正常使用),並在網站公開充電樁可靠性資料。 六、充電漫遊支付服務(Payment roaming):充電樁營運商必須至少和一家第三方充電漫遊服務供應商(roaming provider)進行合作,使消費者可以透過漫遊服務,使用同一APP或具RFID感應功能的卡片,支付不同充電樁營運商的充電費用。
英國發布「人工智慧:機會與未來決策影響」政策報告,並聚焦人工智慧運用及管理英國科學辦公室於2016年11月9日,發布一份政策報告:「人工智慧:機會與未來決策影響(Artificial intelligence: opportunities and implications for the future of decision making)」,介紹人工智慧對於社會及政府的機會和影響,此份政策報告並提出以下各項重要建議: (一)關於人工智慧及應用界定與發展 人工智慧是指由人工製造系統所表現出來的智慧。不僅是將現有的流程自動化,還包含制定目標,並利用電腦程式實現這些目標,常見案例包括線上翻譯、語音辨識、搜尋引擎篩選排序、垃圾郵件過濾、透過用戶回饋改善線上服務、預測交通流量、環境或社會經濟趨勢發展觀察等。 (二)未來對社會及政府利益及衝擊 人工智慧針對提高生產力有巨大的潛力,最明顯的就是幫助企業或個人更有效地運用資源,並簡化大量資料的處理,例如Ocado 及 Amazon這樣的公司正充份利用人工智慧改善倉儲及銷售網路系統,使得客戶可便利快速購得網購商品。 目前,政府也日益增加相關技術的運用,以提高公共服務效率,使資源達到最佳化分配;減少決策者被誤導的可能;使政府決策透明化;確保各部門更了解人民的意見。然政府在利用人工智慧及巨量資料時,應遵守倫理使用指南,並遵守英國資料保護法及歐盟一般資料保護規則等相關法規。 在巨量資料、機器人、自動系統對於勞動市場的衝擊一直都是關注的議題,對於面臨未來工作結構的轉型及相關技術人員的進修及培養,應及早規劃,以適應未來的轉變。 (三)關於相關道德及法律風險管理課題 人工智慧可能潛在相關道德倫理問題。許多專家認為政府應積極管理並降低風險發生可能性,可從以下兩個面向思考: (1)研究機器學習與個人資料運用結合時,對個人自由、隱私和同意等概念的影響。 (2)調適由人工智慧作決策行為時的歸責概念和機制。 有關實際案例之研究,則包括,執法單位在應用預測技術時,應避免以種族、國籍、地址作為標準,並嚴守無罪推定原則,以防止民眾受到歧視或不公平的指控;透過人工智慧可從公開資料推測出某些私人訊息或其親朋好友的消息,此訊息即可能超出原先個人同意披露的內容;原先匿名化及去識別化的訊息,因人工智慧功能加強,導至可能被重新識別,故須定期檢視該保護措施是否足夠。另外,人工智慧的演算偏差可能導致偏見的風險,為了降低這種風險,技術人員應採取對應措施。 針對責任及疏失的判斷,目前尚無太多的實務案例,但為保持對使用人工智慧的信任,仍需有明確的歸責制,可能有必要讓首席執行長或高級主管對人工智慧做出的決策負最終責任。許多專家也建議,部分技術內容須保持透明度,以確定技術使用時是否有盡到相關注意義務。 人工智慧已成為未來發展趨勢之一,對於社會整體層面影響將越來越深,新的技術除了可提升生產力,帶來便利的生活,同樣也會帶來衝擊。為促進相關產業發展及推展新技術的使用,應打造技術發展友善環境,並對於公眾安全進行相關風險評估,如果風險屬於現有監管制度範圍,應評估是否可充分解決風險,或是須要做相對應的調適。另外,在人工智慧融入現實世界同時,相關業者應注意相關產品安全性、隱私權保護和從業人員的倫理教育,以提高大眾對新技術的接受及信賴,並確保對於未來挑戰及轉變已做好萬全準備。
著名商標之淡化保護 v.s. 嘲諷性使用著名商標之言論自由保障-從美國商標法及判決評析