美國政府近年來為預備恐怖活動積極部署國家安全相關措施,包括運用出口管理規則(Export Administration Regulations)監控軍商二用技術及產品(dual-use items)之輸出;然而在維護國家安全的同時,美國仍然希望能持續鞏固其經濟及技術領先地位,以及避免全球高科技及市場遭到稀釋。美國總統因此於今(2008)年初,提出一系列有關軍商二用出口管制之行政新措施,欲藉此強化軍商二用出口管制制度(dual-use export control system)。其主要目標如下:
(1)適當管制外國終端用戶(Foreign End-Users):美國政策作法是,未來軍商二用出口管制制度將要著重在美國高科技產品外國終端用戶之管理,除了保持其拒絕將敏感性科技輸給武器擴散份子、國際恐怖分子和習慣進行違背美國國家安全及外交政策與利益之國家對象之宗旨外,美國一方面將擴大受管制實體清單(Entity List)對象範圍,嚴格審查曾從事違背美國國家安全和外交政策及利益活動之外國夥伴;另方面,美國則將妥善使用所謂正當使用者計畫(Validated End User(VEU) program),免除這些受信賴之使用對象在輸出產品時受制於嚴格的出口申請程序。例如港商Manufacturing International Corporation(SMIC)最近即被納入VEU初始清單。
(2)增進國家競爭能力:美國將以維持經濟競爭力和創新研發為目標,建立一道檢討受管制軍商二用標的之常規程序,藉此重新評估並適時修正商業控制清單(Commerce Control List)所列產品及對象。
(3)透明化:為求達到資訊公開、共同促進國家安全及競爭之目的,美國商業部還會在網站上公開受到高度審查之外國夥伴清單。
最後,美國行政主管機關亦表示,為了有利於行政機關有效執行國家軍商二用出口管制政策,高度支持透過出口管理法(Export Administration Act)修正之再授權,更新違法之刑罰規定,並提升行政機關之執行權限。
本文為「經濟部產業技術司科技專案成果」
V2V(Vehicle-to-vehicle)通訊使用短程無線通訊技術(dedicated short-range radio communication, DSRC)交換周邊車輛速度與位置等相關訊息,並協助採取相對應措施,如警告駕駛前方車輛正在剎車,或於駕駛視線死角處有其他車輛正高速接近。因此,使用V2V通訊技術可有效避免車輛間相互碰撞、紓解交通壅塞之問題,對環保方面亦有所助益,然而,此技術於多數車輛間得以相互通訊時,方能最大化其效益。 V2V通訊技術可以每秒約10次之頻率,使車輛間相互廣播並接收全面之訊息,從而在一定距離範圍內360度「感知」其他車輛並與其他車輛進行「對話」。若將搭載V2V通訊技術之車輛配備適當的軟體或安全設備,車輛間即可利用接收到的有效訊息來避免潛在的事故威脅。V2V通訊技術可偵測出超過300公尺範圍之交通情況,包括因交通、地形或天氣影響而受人類駕駛忽略之危險,較傳統使用雷達系統或攝影鏡頭進行偵測之方式更為精準。 無論是機車、汽車、卡車及公車皆可使用V2V通訊技術以提升車輛安全系統的性能,車輛間之連接技術將成為協助駕駛發現潛在交通危機的輔助工具,有助於顯著減少每年因交通事故喪生之人數。
歐盟發布新人工智慧規範,以風險程度判斷防止科技濫用歐盟執委會於2021年4月21日提出「人工智慧規則」(AI regulation)草案,成為第一個結合人工智慧法律架構及「歐盟人工智慧協調計畫」(Coordinated Plan on AI)的法律規範。規範主要係延續其2020年提出的「人工智慧白皮書」(White Paper on Artificial Intelligence)及「歐盟資料策略」(European Data Strategy),達到為避免人工智慧科技對人民基本權產生侵害,而提出此保護規範。 「人工智慧規則」也依原白皮書中所設的風險程度判斷法(risk-based approach)為標準,將科技運用依風險程度區分為:不可被接受風險(Unacceptable risk)、高風險(High-risk)、有限風險(Limited risk)及最小風險(Minimal risk)。 「不可被接受的風險」中全面禁止科技運用在任何違反歐盟價值及基本人權,或對歐盟人民有造成明顯隱私風險侵害上。如政府對人民進行「社會評分」制度或鼓勵兒童為危險行為的語音系統玩具等都屬於其範疇。 在「高風險」運用上,除了作為安全設備的系統及附件中所提出型態外,另將所有的「遠端生物辨識系統」(remote biometric identification systems)列入其中。規定原則上禁止執法機構於公眾場合使用相關的生物辨識系統,例外僅在有目的必要性時,才得使用,像尋找失蹤兒童、防止恐怖攻擊等。 而在為資料蒐集行為時,除對蒐集、分析行為有告知義務外,也應告知系統資料的準確性、安全性等,要求高度透明化(Transparency obligations)。不只是前述的不可被接受風險及高風險適用外,有限風險運用中的人工智慧聊天系統也需要在實際和系統互動前有充足的告知行為,以確保資料主體對資料蒐集及利用之情事有充足的認知。 在此新人工智慧規範中仍有許多部份需要加強與討論,但仍期望在2022年能發展到生效階段,以對人工智慧科技的應用多一層保障。
淺談歐洲法院1/09意見後之歐洲共同體專利制度發展近況 新加坡科技與研究局針對未來工廠提出研究規劃及方向新加坡科技與研究局(Agency for Science, Technology and Research)於2017年7月26日提出未來工廠(Toward the factories of the future)概念及相關研究方向,自動化(Automation)、機器人(robotics)、先進電腦輔助設計(advanced computer-aided design)、感測和診斷技術(sensing and diagnostic technologies)將徹底改變現代工廠,可製造的產品範圍廣泛,從微型車乃至於飛機皆可生產。積層製造(Additive Manufacturing),又稱3D列印(3D printing),可使用單一的高科技生產線來創造許多不同的產品項目,而不需要傳統大規模生產的設計限制和成本,伴隨未來高效能電腦和感測技術之進步,積層製造速度也會隨之加快。而智慧工廠(smart factories)將與物聯網(IOT)、雲端計算(cloud computing)、先進機器人(advanced robotics)、即時分析(real-time analytics)與機器學習(machine learning)等技術與積層製造技術結合,將大為提升生產速度及產量。 為加速及改善積層製造的製程,最重要的方法之一,是使用材料物理學的基本原理來模擬製造過程,而近期更引進跨學科之研究,「模擬」最終產品化學成分和機械性能的微觀結構。因積層製造是一個複雜又困難的過程,透過變化既有規則之模擬(Game-Changing simulations),若建立完成模型且模擬成功,將成為積層製造的殺手級技術。在未來的五到十年,我們將看到更多的零件從積層製造技術生產出來,而且這種技術有機會成為未來工廠的生產基礎。由於現行材料及製造流程與機器必須配合一致,些許的差異皆會生產出不同品質之產品,故未來積層製造工廠的結果穩定重現性(repeatability)和標準化(standardization),將是產品商業化的主要障礙與挑戰。