在製藥領域運用生物技術的方法來研發新藥與新醫療診斷方法,已有越來越重要的趨勢,且將成為未來醫療照顧的主流,因此各國政府均積極透過各種政策工具,企圖搶食此塊經濟利益的大餅,不過直到目前為止,推動生技製藥最為成功的國家,仍集中在少數幾個研發大國。一直以來,德國在製藥領域也是居有舉足輕重的科技領先地位,不過在涉及生技製藥這一塊,德國目前的成就有限,已成功上市而來源於德國的生技藥品,並不多見(2005年德國核准通過的140項新有效成分中,僅有6項由德國公司所研發)。另一方面,德國擁有全歐洲最多的生技公司數目,這些生技公司每年從事相當多的研發活動,但其與製藥公司卻甚少主動合作。為加強生技產業與製藥產業的連結與合作,德國聯邦教育與研究部(Bundesministerium für Bildung und Forschung, BMBF)新近提出了新補助政策-「生技製藥之策略性競爭」(Strategiewettbewerb BioPharma),企圖為德國重新贏回世界藥局(Apotheke der Welt)的美名。
這個新的策略規劃所訴求的對象,是由主要來自於學術界的生技公司與傳統的製藥產業界所成立的合作團隊,而以企業型態經營者(Unternehmerisch geführte Konsortien aus Wissenschaft und Wirtschaft )。BMBF希望透過鼓勵建立這樣的合作關係,讓這些合作參與者提出各種有助於以更有效率的方法研發醫藥品的新策略性概念或創意(Ideen für neuartige strategische Konzepte vorzulegen, die die Entwicklung von Medikamenten effizienter machen),以填補生技製藥產業價值創造鏈中的漏洞。所謂的價值創造鏈,指從實驗室的研究、醫院的投入、到醫藥品的製造、甚至是最後端的藥局等各生技製藥研發乃至製造使用所不可缺的各重要環節。
由德國的這項新補助政策可以看出,在生技製藥領域,德國政府的補助方向已不再侷限於傳統的技術能力的提升,反而是如何串連整個產業鏈以發揮價值創造的最大效益,為此一補助新政策的最大特色。由於補助的目的是在實現價值創造,因此補助去進行價值開發與規劃的醫藥技術項目,也沒有特別限定,反而是希望可以涵蓋所有可能的醫藥技術領域,因此包括抗癌藥物與治療神經系統方面疾病的藥物研發、開發新的疫苗或疾病診斷用的生物標記、以及如何建構臨床研究的新基礎架構(der Aufbau neuartiger Infrastrukturen für klinische Studien)等,均屬BMBF徵求創意的範圍。
經BMBF邀集由國際專家組成的評選委員會評選通過的創意,將可在未來五年獲得BMBF的經費持續協助。BMBF預計選出五個產學合作聯盟,投入總計一億歐元的經費支持,預計在今(2008)年秋天,將可順利選出五個補助的對象。BMBM的此項新補助政策受到生技製藥產業界的廣大迴響,成功引導德國生技產業與製藥產業構思各種可能的合作模式。BMBF表示,其在選擇適格的合作聯盟作為補助對象時,最重要的考量標準為合作夥伴的個別經歷介紹、其有無執行能力、是否具備執行所需的基礎環境條件、所提出的合作概念是否足以使其具備國際競爭優勢,以及所規劃的醫療技術發展是否具有創新性、原創性與市場潛力。
本文為「經濟部產業技術司科技專案成果」
澳洲隱私保護辦公室(Office of the Australian Information Commissioner, OAIC)於2019年9月發布「健康隱私指引」(Guide to health privacy)協助健康服務提供者了解及實踐相關規範所制定之隱私義務以確保個人資料安全。依據1988年澳洲隱私法(Privacy Act 1988)規定,健康服務指所有評估、維持、改善或管理個人健康狀況;或是診斷、治療或紀錄個人疾病或健康狀況之行為。而健康服務提供者除了醫院及醫療人員,更包含其他專業人員例如健身房及減肥診所、私立學校及托兒所、遠端醫療服務等所有涉及健康資料並提供健康服務之單位及人員。由於澳洲隱私法要求服務提供者必須積極建立、實施及維護隱私合法處理程序,為了協助所有健康服務提供者確實遵守法定義務,以減少健康資料之隱私風險問題,OAIC制定「健康隱私指引」提出八大步驟要求健康服務提供者確保遵守義務並保障所持有之個人資料: 制定並實施隱私管理計畫,確保遵守澳洲隱私原則(Australian Privacy Principles, APPs)。 制定明確的責任制以進行隱私管理,並及時提供員工幫助與指導。 建立個人資料檔案紀錄,以確認持有之個人資料。 了解法律規範之隱私義務並實施法定流程以履行義務。 定期舉辦員工隱私培訓課程以強化團隊基礎知識。 建立隱私權政策並於網頁上呈現或是提供手冊說明相關內容。 保護所持有之資料不被濫用、遺失或未經授權的修改及揭露等。 制定資料外洩因應措施,針對資料外洩進行危機處理。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
食品標示 美國新制上路隨著食物過敏與過胖等健康問題愈來愈受重視,美國FDA(Food and Drug Administration, 食品暨藥物管理局)規定從2006年1月1日起,食品製造商必須在食品標示上揭示產品中八種主要過敏原與反式脂肪(trans fat)含量,並且必須加強揭示卡路里含量、說明整個包裝所含的養分。 依據此項新規定,廠商必須在食品標籤上以簡易的文字,標示八種容易造成過敏的過敏原,包括核果(杏仁、胡桃、大胡桃)、牛奶、蛋類、魚類、甲殼綱蝦蟹、花生、大豆與小麥。至於反式脂肪,又稱為轉化脂肪或反脂肪,是不飽和脂肪酸的一種,它會刺激人體內低密度脂蛋白(LDL)的增加,進而使低密度蛋白膽固醇(LDL-C)的量增加。LDL-C又被稱為『壞膽固醇』或『不好的膽固醇』,它會間接刺激膽固醇升高,增加罹患心臟血管疾病的風險。過去一直沒有決定每人每天攝取量標準,因此在商品包裝上的營養成分表(Nutrition Facts Table)一直都沒有列出反式脂肪含量,但是新制上路後,在包裝標籤上面也必須列出反式脂肪含量。 在消費者越來越重視健康問題之趨勢下,未來如何製造反型脂肪低或零含量的食用加工油脂產品,相信會是相關業者所面臨的新挑戰。
美國擬投入110億美元扶持半導體研發,並成立國家半導體技術中心美國白宮於2024年2月9日宣布從《晶片與科學法》(CHIPS and Science Act)撥款110億美元執行「CHIPS研發計畫」(CHIPS Research and Development (R&D) programs),並將設立投資基金,協助美國新興半導體公司技術商業化發展。 CHIPS研發計畫源係於美國國會於2022年8月通過《晶片與科學法》,提供527億美元的經費支持美國半導體產業,其中390億美元用於補助半導體生產,110億美元用於半導體研發。此次CHIPS研發計畫的具體作法如下: (1)建置國家半導體技術中心(National Semiconductor Technology Center,簡稱NSTC):為CHIPS研發計畫的核心項目,將投資50億美元建置NSTC,協助美國先進半導體研發與設計,確保美國於半導體領域的領先地位。NSTC將向公眾共享設施與專業知識,幫助創新者取得相關專業知識與能力。此外NSTC亦將推動利益團體(Community of Interest),將開放所有利益相關者就NSTC的規劃提供意見。 (2)投資半導體人才(Investing in the Semiconductor Workforce):創建人才勞動卓越中心(Workforce Center of Excellence),以培育、訓練美國半導體產業所需人才,並促進產業界與學術界的合作。 (3)投資其他關鍵領域研發之需求(Investing in Other Key R&D Needs):向美國晶片製造研究所(CHIPS Manufacturing USA Institute)投資至少2億美元,以創建美國首座半導體製造數位孿生研究所(Semiconductor Manufacturing Digital Twin Institute),以降低晶片研發製造的成本,加速創新技術商業化之週期;以及投資3億美元於先進封裝產業,以提升半導體系統之效能。以外亦投資1億美元資助「CHIPS量測計畫」(CHIPS Metrology Program)的29個項目,幫助研發新型測量設備與方法,以滿足為電子產業的技術需求。