93年國人申請發明專利數量大幅成長28.39﹪ 創新研發成果明顯躍進

 

 

  93年專利申請統計資料顯示我國受理專利申請案總數、發明申請案數量、及國人發明申請案等指標,均呈現相當幅度成長,顯示我國過去幾年官方與民間投資創新研發成果有明顯成長。


   93年專利、商標申請與核准統計出爐,全年專利新申請案件總數72,105件,較92年的65,742 件增加6,363件(9.68﹪),本國人申請案43,038件,外國人29,067件。其中屬技術強度較高的發明申請案件總數計41,930件,較前一年增加6,107件(17.05﹪);本國人發明申請案16,754件,較前一年大幅增加3,705件(28.39﹪),顯示我國產業研發技術成果有向上提昇的趨勢。93年專利發證數66,415件,比92年大幅增加24,333件(57.82﹪),此係因93年7月專利法修正實施,新型專利改採形式審查,縮短專利審查時程,及專利廢除異議制度改採繳費後公告同時發證的制度轉換短期影響。


   93年商標申請案依類別統計為72,650件,比92年申請案件數65,907件,增加6,743件(10.23﹪),;93年商標公告註冊案計54,912件,較前一年74,572件減少19,660件(-26.36﹪);依類別計55,986件,均較前一年減少。不論是在申請或公告註冊數都是以本國人佔絕大多數。商標申請於92年底開始實施一申請案多類別制度,不同類別毋需另提出一獨立申請案,因此依類別統計數會比申請案件數多。

 

本文為「經濟部產業技術司科技專案成果」

※ 93年國人申請發明專利數量大幅成長28.39﹪ 創新研發成果明顯躍進, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=277&no=55&tp=1 (最後瀏覽日:2026/02/21)
引註此篇文章
你可能還會想看
美國行動健康照護新近法制趨勢─兼論對我國法之觀察與建議

美國國家安全局發布「軟體記憶體安全須知」

  美國國家安全局(National Security Agency, NSA)於2022年11月10日發布「軟體記憶體安全須知」(“Software Memory Safety” Cybersecurity Information Sheet),說明目前近70%之漏洞係因記憶體安全問題所致,為協助開發者預防記憶體安全問題與提升安全性,NSA提出具體建議如下:   1.使用可保障記憶體安全之程式語言(Memory safe languages):建議使用C#、Go、Java、Ruby、Rust與Swift等可自動管理記憶體之程式語言,以取代C與C++等無法保障記憶體安全之程式語言。   2.進行安全測試強化應用程式安全:建議使用靜態(Static Application Security Testing, SAST)與動態(Dynamic Application Security Testing, DAST)安全測試等多種工具,增加發現記憶體使用與記憶體流失等問題的機會。   3.強化弱點攻擊防護措施(Anti-exploitation features):重視編譯(Compilation)與執行(Execution)之環境,以及利用控制流程防護(Control Flow Guard, CFG)、位址空間組態隨機載入(Address space layout randomization, ASLR)與資料執行防護(Data Execution Prevention, DEP)等措施均有助於降低漏洞被利用的機率。   搭配多種積極措施增加安全性:縱使使用可保障記憶體安全之程式語言,亦無法完全避免風險,因此建議再搭配編譯器選項(Compiler option)、工具分析及作業系統配置等措施增加安全性。

歐盟執委會通過關於《人工智慧責任指令》之立法提案

  歐盟執委會(European Commission)於2022年9月28日通過《人工智慧責任指令》(AI Liability Directive)之立法提案,以補充2021年4月通過之《人工智慧法》草案(Artificial Intelligence Act)。鑑於人工智慧產品之不透明性、複雜性且具自主行為等多項特徵,受損害者往往難以舉證並獲得因人工智慧所造成之損害賠償,《人工智慧責任指令》立法提案即為促使因人工智慧而受有損害者,得以更容易獲得賠償,並減輕受損害者請求損害賠償之舉證責任。   《人工智慧責任指令》透過引入兩個主要方式:(一)可推翻之推定(rebuttable presumptions):人工智慧責任指令透過「因果關係推定(presumption of causality)」來減輕受損害者之舉證責任(burden of proof)。受損害者(不論是個人、企業或組織)若能證明人工智慧系統因過失或不遵守法規要求之義務,致其受有損害(包括基本權利在內之生命、健康、財產或隱私等),並且該損害與人工智慧系統之表現具有因果關係,法院即可推定該過失或不遵守義務之行為造成受損害者之損害。相對的,人工智慧之供應商或開發商等也可提供相關證據證明其過失不可能造成損害,或該損害係由其他原因所致,以推翻該損害之推定。(二)證據揭露機制(disclosure of evidence mechanism):若受害者之損害涉及高風險人工智慧時,得要求自該供應商或開發商等處獲取證據之權利。受害者透過證據揭露機制能夠較容易地尋求法律賠償,並得以找出究責的對象。   歐盟執委會認為以安全為導向的《人工智慧法》,為人工智慧訂定橫向規則,旨在降低風險和防止損害,但仍需要《人工智慧責任指令》之責任規定,以確保損害風險出現時,相關賠償得以被實現。但歐盟執委會仍選擇了較小的干預手段,《人工智慧責任指令》針對過失之責任制度進行改革,並未採取舉證責任倒置(a reversal of the burden of proof)之作法,而是透過「可推翻之推定」,一方面減輕受損害者之舉證責任,使受損害者得對影響人工智慧系統並產生過失或侵害行為之人提出損害賠償;另一方面賦予人工智慧之供應商或開發商等有機會推翻前揭造成損害之推定,以避免人工智慧系統之供應商或開發商面臨更高的責任風險,可能阻礙人工智慧產品和服務創新。

美國發起「投資報酬計畫」(Return on Investment Initiative, ROI)全面檢視科研成果商業化法制

  川普總統在2018年4月發布「總統管理議程」(President’s Management Agenda)將國家科研成果商業化之發展視為「聯邦跨機關優先目標」(Cross-Agency Priority Goal, CAP Goal)。為維持美國全球科技創新領先地位,美國政府每年投資約1500億美元於各聯邦所屬大學與研究機構進行科技研究。美國國家標準與技術中心(NIST)與白宮科技政策辦公室(OSTP)聯合發起「投資報酬計畫」(Return on Investment Initiative, ROI),宗旨為釋放美國創新(Unleashing American Innovation),讓政府投資預算發揮科研補助之最大效益。   計畫目的包括:1.評估現行政府從事技術移轉指導原則,檢視應予以維持與待改革之處;2.吸引後期研發、商業化與先進製程的技轉投資,並降低法規阻礙;3.支持科研創新產官學合作模式與技轉機制;4.有效移除技轉阻礙以利加速技轉成效,並聚焦於國家重要產業發展的新興措施;5.評估聯邦政府資金運用指標成效;6.創造激勵學研機構提升技轉成效之誘因。   NIST調查指出,阻礙技轉發展之原因包括:1.技轉與智慧財產權協商所涉高額交易與時間成本;2.不同政府單位對法規之解釋、適用與實踐意見相歧;3.智慧財產權保護不足、技術授權使用限制與政府行使介入權(march-in rights)限制;4.公務員參與科技新創與衍生企業(spin-off)限制與利益衝突規範。此ROI計畫已於2018年7月30日完成各方意見徵詢,總計共104份。預計於2019年年初,做出完整分析報告與法制建議。

TOP