IBM送大禮給開放原始碼軟體開發商,全美專利龍頭IBM宣布,釋出500項專利供軟體開發業者使用。此舉顯示IBM的智慧財產權策略有重大改變,而高科技產業同時將面臨挑戰。
IBM有意藉此在開放原始碼軟體開發業間建立專利共享的風氣,IBM資深副總凱利(John E. Kelly)表示,此舉是跨出一大步,希望其他人能追隨IBM做法,讓共享的專利能愈來愈多。另一位副總史托凌(Jim Stallings)指出,此舉是美國史上截至目前最大宗的專利開放案,意在鼓勵其它公司釋出專利以刺激科技創新。與此同時,美國專利商標局公布了去年度專利核發紀錄,IBM以獲得3248項專利勇冠全美,並將連霸紀錄推向連續12年,IBM去年度新添專利數量硬是比第二名的松下電器多出1314項。
IBM這次釋出的五百項專利,其領域涵蓋儲存管理、模擬多重處理、影像處理、資料庫管理、網路連結和電子商務。該公司希望透過此一開放授權計畫帶動開放原始碼軟體開發業的合作風氣,這有利將問題轉化成一個交流平台,也有助改良IBM的發明。
過去,IBM曉得利用專利授權創造更大利潤,這十年來IBM靠專利賺來的錢一直是勇冠全球,即使這次開放五百項專利,仍有數以千計的專利繼續為IBM賺取大筆佣金。大量開放專利的舉動造就IBM以較寬鬆定義重新詮釋專利法的先驅地位,評論家認為,這十年來的專利法改革侷限了軟體開發者的創新自由度,不再像促成個人電腦革新和網路革命的時空背景那般自由。IBM表示,該公司仍是專利的所有人,依舊保留運用專利對抗商用軟體製造商的權利。
本文為「經濟部產業技術司科技專案成果」
中國大陸近年來積極布局智慧城市建設,並逐步將智慧城市的概念發展為具體的地理空間,2014年2月14日智能系統國家測繪地理信息局測繪發展研究中心--社會科學文獻出版社,發布2013年測繪地理信息藍皮書—《智慧中國地理空間智能體系研究報告(2013)》(以下簡稱「藍皮書」),揭示提出打造2030年智慧中國地理空間智能體系的具體目標。係以巨量地理資訊資源為基礎,透過新一代網際網路,以智慧聯網(Internet of Things, IoT)、雲端計算(Cloud Computing)和巨量資料(Big Data),實現地理資訊的智慧化應用,並透過相關政策形成以地理資訊獲取、處理及應用為主的雲端產業鏈。 自2013年起,中國大陸國家測繪地理信息局每年選擇10個城市作為智慧城市建設試點,目前已有太原、廣州、徐州、臨沂、鄭州等試點城市完成初步項目,正進行設計論證及完善基礎設施等工作。該局副局長李維森並指出,大陸將在2015年全面完成數字城市地理空間框架建設,並於此基礎升級為智慧城市。 中國大陸國土資源部亦從2013年底配合「十二五規劃」逐步推動以雲端運算、巨量資料以及智慧聯網等新一代資通訊技術所建構之「國土雲」,以滿足國土資源資訊利用、查詢、監管的需求,並透過資訊數位化,為其他領域重大工作提供基礎資訊。 從中國大陸近年來對於國家地理資源之蒐集、調查與管理手段觀察,可探知其對於國土資訊產業發展的高度重視,並欲在維護國土安全的前提下,加強推動有助於促進資訊流通效率以及資源廣泛利用的公共服務平台建設;對於此等具有國家安全戰略意義之新興科技領域,目前仍以國家投資為主要推動手段,後續相關法規發展殊值注意。
臺積電於美國專利訴訟勝訴纏訟四年後,臺灣積體電路製造股份有限公司及其北美子公司(臺積電),在與美國Ziptronix公司之專利訴訟中獲得勝訴判決。 同為半導體公司的Ziptronix於2010年起訴主張臺積電所製造,主要用於智慧型手機相機的背照式CMOS影像感測器晶片,侵害該公司9項專利及超過500項申請專利範圍。 依據美國專利法第271條(a)項,除該法另有規定外,於專利權存續期間,未經許可於美國境內製造、使用、要約銷售,或銷售已獲准專利之發明產品,或將該專利產品由外國輸入至美國境內,方屬侵害專利權。因此本案中,臺積電即以美國專利法不適用於美國境外之製造、銷售為由,向法院聲請駁回原告Ziptronix公司之訴。承審法官同意臺積電簡易判決(summary judgment)的聲請,並於10月底作出判決。 臺積電於訴訟中成功主張涉訟晶片的製造及銷售交貨行為皆在臺灣完成。承審法官更指出,縱使如原告Ziptronix公司所言,臺積電相關契約皆於美國境內協商及簽訂,但因為該等契約本來就計畫於海外履行,因此臺積電的涉訟晶片仍非於美國境內銷售。
醫療科技公司轉型提供資料類型產品解決方案於美國之智財權布局建議醫療科技公司轉型提供資料類型產品解決方案於美國之智財權布局建議 資訊工業策進會科技法律研究所 2023年05月31日 過去,醫療科技公司僅專注於開發針對醫療問題的硬體解決方案,近年這些企業則致力於轉型開發收集及利用大量病人、資料提供者資料之產品,而轉變成資料平台公司,而更可以全面了解病人及客戶生活習慣及健康狀況。 其中許多解決方案均利用人工智慧(Artificial Intelligence, AI)及機器學習(Machine Learning, ML),相較傳統上研發成果多為硬體設備,現今則轉變成出現大量軟體解決方案,保護研發成果之方式將發生改變,如何選擇合適的智慧財產權保護研發成果成為企業重要課題,此亦影響企業如何做智慧財產布局及擬定公司相關經營策略,因此建議企業——尤其是開發醫療資訊平台之醫療科技公司,特別是致力於開發醫療器材軟體(Software as a Medical Device, SaMD)、醫療設備嵌入式軟體(Software In a Medical Device, SiMD)及應用於醫療技術中的人工智慧等新興領域時可以參考以下提供之思考方向選擇對於企業發展最適切之智慧財產權保護態樣。[1] 研發成果如欲獲得專利保護,該發明必須係獨一無二且可以傳授的——即人們不能將自然發生或不可再現的事物申請專利,因為發明需透過專利以清楚的方式概述,並明確定義專利內容,並向公眾揭露,以便於申請人取得專利、並於專利期限屆滿後(專利保護期限因各國法規、專利類型而將有所不同,建議企業應了解欲布局之國家相關法規規定,如台灣之發明專利[20年]、新型專利[10年]、設計專利[15年]),使大眾得藉以實施該技術內容。[2] 在美國,專利係由美國專利商標局賦予所有權人於一定期間內壟斷其發明之權利,即美國聯邦法律更使專利所有權人在專利權效期內得以禁止他人於該期間內於美國製造、使用、銷售或進口至美國這項已獲得專利保護之發明,此給予專利權人一個得以建立一個阻止他人進入市場的巨大障礙,可防止競爭及保護專利權人可以自由實施該權利。[3] 因專利有上述特性,文章作者建議,如裝置(device)、該裝置使用之軟體,對於從事新藥開發之藥廠,於保護新穎成分(New Chemical Entities)、相關之治療方法及人工智慧相關發明較適合以專利保護。[4] 營業秘密係指資訊擁有者已盡合理努力保密,且不為公眾所周知或非可被公眾輕易探知而具有獨立經濟價值的,任何形式及類型之資訊。合理努力可能包括(但不限於),要求員工簽署保密協議、定期提醒員工其負有保密義務(如:針對職務不同/所從事不同工作之員工,保密義務內容、程度、時間是否有所不同?)、踐行必要而知悉(need to know) 原則(如:執行不同工作之人員是否可互相存取各自的資料? 抑或僅能存取自己工作所需之資料?)、佈署IT安全措施或辦公室安全措施之狀況(如:是否有門禁?資料如有異常存取狀況時是否有示警機制?)並須即時調查及採取行動打擊涉及盜用營業秘密之行為(如:是否有相關通報不當使用營業秘密之管道及監控機制?)[5] 在美國,傳統上營業秘密之保護是結合各州法律而成,除了紐約州及北卡羅萊納州以外,所有州都頒布了其特有版本的《統一營業秘密法》(Uniform Trade Secrets Act, UTSA)——係一項1979年頒布的統一法案。於2016年,國會又頒布了《保護營業秘密法Defend Trade Secrets Act, DTSA》,該法案保障當事人於聯邦法院提起營業秘密訴訟之權利,且只要促進犯罪行為之行為發生於美國,當事人即可於國外進行訴訟,此外,《統一營業秘密法》中規定營業秘密包含公式、模式、彙編、程式、設備、方法、技術或過程。而依《保護營業秘密法》(Defend Trade Secrets Act, DTSA),營業秘密可為任何形式,無論係以物理、電子、圖形、攝影或書面形式儲存、編輯或紀錄之財務、商業、科學、科技、經濟或工程資訊均為營業秘密之範疇,因此,營業秘密之適用範圍較廣,於美國甚至抽象之想法均可受營業秘密保護。[6] 與僅提供有限保護期限之專利有別,如欲獲得營業秘密之保護,僅需資訊持續保密並存在並持續存有價值,該資訊即會持續受到營業秘密保護並擁有無限的有效期限,亦即,只要該資訊仍為秘密,即受到營業秘密之保護。如:可口可樂已將其配方作為營業秘密保護了130多年之久。惟與專利不同的是營業秘密一但被公眾周知或得以透過適當方式獨立開發(如競爭對手自己獨立開發而產出之資訊),就將失去營業秘密之保護。[7] 因為營業秘密之特性,諸如蛋白質結構、客戶清單、機器學習演算法、原始碼、化學製程參數(如:會產生化學反應之溫度或壓力)、甚至是醫療科技公司近年致力經營的人工智慧領域所產出的人工智慧、新的模型訓練方法、優化模型參數、消極專有技術(如:不該做什麼)。[8] 惟選擇專利抑或營業秘密之方式保護其研發成果將視企業的業務為何決定,如缺乏透明度之產業可能較適合以營業秘密方式保護,而非專利。例如:網路安全公司可能傾向於營業秘密保護,因為申請專利揭露其機密安全演算法可使競爭對手開發競爭產品或使駭客進行量身訂製之攻擊。相較之下,製造容易檢測、針對消費者之電子產品之企業更依賴專利保護,製造具有行業標準化品質之產品之企業亦是如此。[9] 總體而言,是否容易被逆向工程將會是決定以專利或營業秘密保護之關鍵性調查方式。因申請專利必須揭露細節事項,將對廣泛保護資料為基礎之軟體(且有使用人工智慧或機器學習)較具挑戰性,故專利較適合保護裝置(device)及會相互作用之實體產品和軟體。而營業秘密則要求資料所有人無限期地維持秘密性,亦須注意自己的想法獲得他人關注時遭仿效之風險,故較適合造價高或難以仿效的軟體、製造方法或產品。[10] 而對於生技醫療公司而言,其應考量使用混和策略以保護人工智慧相關之創新,如:專有之原始和訓練資料、模型之優化參數、將專有技術用於訓練模型及其他難以進行逆向工程之人工智慧相關的此類機密資訊,可能較適合用營業秘密保護,同時該技術的其他方面,如人工智慧系統或使用其開發之藥物則可透過專利保護。[11]惟不論企業決定要將該資訊做為營業秘密保護或申請專利保護,企業對於研究人員發表相關資訊的行為均應審慎評估,避免因揭露而喪失專利之新穎性或營業秘密之秘密性的情形。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]Kristin Havaranek, Martin Gomez, Matt Wetzel, Steven TJoe & Stephanie Philbin, Top 5 IP Considerations for Medtech Companies Transitioning To Data-enabled Product Solutions (2023), https://medcitynews.com/2023/01/top-5-ip-considerations-for-medtech-companies-transitioning-to-data-enabled-product-solutions/ (last visited June 1,2023). [2]John Quinn, Protecting Inventions Through Patents and Trade Secret (2023), https://www.newsweek.com/protecting-inventions-through-patents-trade-secrets-1788352 (last visited May 30, 2023). [3]Id. [4]Charles Collins-Chase, Kassanbra M. Officer & Xinrui Zhang, United States: Strategic Intellectual Property Considerations For Protecting AI Innovations In Life Sciences (2023), https://www.mondaq.com/unitedstates/trade-secrets/1276042/strategic-intellectual-property-considerations-for-protecting-ai-innovations-in-life-sciences (last visited May 30, 2023) [5]Id. [6]John Quinn, supra note 2. [7]Id. [8]Collins-Chase et al., supra note 4. [9]John Quinn, supra note 2. [10]Havranek et al., supra note 1. [11]Collins-Chase et al., supra note 4.