Atmel 於2006年3月美國南加州地方法院對世界首屈一指的指紋辨識功能機器的供應商AuthenTec提出告訴,宣稱AuthenTec侵害Atmel兩項專利,今年五月五日法院的即決判決中確定AuthenTec的產品並未侵害Atmel的專利。
AuthenTec 副總裁兼法律顧問 Frederick Jorgensen表示:「從一開始被起訴,對於Atmel的指控,我們十分有信心公司的產品沒有侵權,也十分樂見此次法院的判決。我們相信我們的科技及智慧財產在市場居有領先的地位,為了保護這些資產,我們將會進行保護的措施。」
AuthenTec藉著指紋辨識器增加了很多資產,目前有超過三億個指紋辨識器運用在電腦、手機、PDA及門禁系統上。所有的指紋辨識器都是依據TruePrint的技術精確判斷指紋影像,TruePrint不僅僅可以辨識人類皮膚表層,還可以辨識皮膚表層以下,此項獨一無二的技術不論在任何時間或任何指紋下,都可準確的辨識任何人。目前AuthenTec的客戶包含宏碁、華碩、惠普、三星、LG等等。
除此案之外,AuthenTec尚有許多懸而未決的案子,在三月時,AuthenTec針對Atrua網站上所秀出的智慧型觸控面板手機,提出侵害AuthenTec指紋辨識技術的訴訟。
澳洲聯邦法院近日在Sanofi-Aventis Australia Pty Ltd與Apotex Pty Ltd一案中([2011] FCA 846),首次針對記載藥品資訊的仿單著作權侵權問題進行處理。法院判決Sanofi的Leflunomide藥品仿單含有Sanofi員工相當的知識與判斷,係Sanofi員工的共同著作,受到著作權的保護。法院並進一步判決Apotex的Leflunomide藥品仿單重製了Sanofi 的Leflunomide藥品仿單的重要部分,在係爭案件中,亦無法推斷出有默示的授權,因此判決Apotex侵犯了Sanofi的Leflunomide藥品仿單的著作權。 儘管藥品仿單的複雜問題目前仍備受爭議與討論,澳洲將在醫療物品修正法案(Therapeutic Goods Legislation Amendment (Copyright) Act 2011)中,針對相關問題加以釐清。前述修正案針對1968年著作權法(Copyright Act 1968)新增44BA條,該條項賦予在1989年醫療產品法(Therapeutic Goods Act 1989)25AA條款下有關醫藥產品資訊的合理使用範疇,明確規範包括供給、重製、發行、散佈/傳播(communicating)、改作等利用全部或部分醫療藥品資訊的行為不侵害產品資訊的著作權。
英國身份證立法-我國之借鏡? 日本垃圾電郵法制2005年修正動態 世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。